login
A236305
The number of P-positions in the game of Nim with up to 3 piles, allowing for piles of zero, such that the number of objects in each pile does not exceed n.
5
1, 4, 7, 16, 19, 28, 43, 64, 67, 76, 91, 112, 139, 172, 211, 256, 259, 268, 283, 304, 331, 364, 403, 448, 499, 556, 619, 688, 763, 844, 931, 1024, 1027, 1036, 1051, 1072, 1099, 1132, 1171, 1216, 1267, 1324, 1387, 1456, 1531, 1612, 1699
OFFSET
0,2
COMMENTS
P-positions in the game of Nim are tuples of numbers with a Nim-Sum equal to zero.
(0,1,1) is considered different from (1,0,1) and (1,1,0).
a(2^n-1) = 2^(2*n).
Partial sums of A241717.
This sequence seems to be A256534(n+1)/4. - Thomas Baruchel, May 15 2018
LINKS
Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 37.
T. Khovanova and J. Xiong, Nim Fractals, arXiv:1405.594291 [math.CO] (2014), p. 7 and J. Int. Seq. 17 (2014) # 14.7.8.
FORMULA
If b = floor(log_2(n)) is the number of digits in the binary representation of n and c = n + 1 - 2^b, then a(n) = 2^(2*b) + 3*c^2.
a(n) = 4^floor(log(n)/log(2)) + 3*(n mod 2^floor(log(n)/log(2)))^2 (conjectured). - Thomas Baruchel, May 15 2018
EXAMPLE
If the largest number is 1, then there should be an even number of piles of size 1. Thus, a(1)=4.
MATHEMATICA
Table[Length[Select[Flatten[Table[{n, k, BitXor[n, k]}, {n, 0, a}, {k, 0, a}], 1], #[[3]] <= a &]], {a, 0, 100}]
CROSSREFS
Cf. A241522 (4 piles), A241523 (5 piles).
Cf. A241717 (first differences).
Sequence in context: A160715 A160120 A130665 * A212062 A353259 A345429
KEYWORD
nonn
AUTHOR
Tanya Khovanova and Joshua Xiong, Apr 21 2014
STATUS
approved