login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292941
a(1) = 0, a(2) = 1, and for n > 2, a(n) = 2*a(A252463(n)) + [n == 1 (mod 6)].
8
0, 1, 2, 2, 4, 4, 9, 4, 4, 8, 18, 8, 37, 18, 8, 8, 74, 8, 149, 16, 16, 36, 298, 16, 9, 74, 8, 36, 596, 16, 1193, 16, 36, 148, 16, 16, 2387, 298, 72, 32, 4774, 32, 9549, 72, 16, 596, 19098, 32, 19, 18, 148, 148, 38196, 16, 33, 72, 296, 1192, 76392, 32, 152785, 2386, 32, 32, 72, 72, 305571, 296, 596, 32, 611142, 32, 1222285, 4774, 16, 596, 32
OFFSET
1,3
COMMENTS
Base-2 expansion of a(n) encodes the steps where numbers of the form 6k+1 are encountered when map x -> A252463(x) is iterated down to 1, starting from x=n. An exception is the most significant bit of a(n) which corresponds with the final 1, but is shifted one bit-position towards right (less significant end).
The AND - XOR formulas just restate the fact that J(-3|n) = J(-1|n)*J(3|n), as the Jacobi-symbol is multiplicative (also) with respect to its upper argument.
FORMULA
a(1) = 0, a(2) = 1, and for n > 2, a(n) = 2*a(A252463(n)) + [n == 1 (mod 6)], where the last part of the formula is Iverson bracket, giving 1 only if n is of the form 6k+1, and 0 otherwise.
Also, for n > 2, a(n) = 2*a(A252463(n)) + [n == 1 (mod 2)]*[J(-3|n) = 1], where J is the Jacobi-symbol.
a(n) = A292263(n) AND (A292253(n) XOR A292383(n)), where AND is bitwise-and (A004198) and XOR is bitwise-XOR (A003987).
a(n) = A292263(n) AND (A292255(n) XOR A292385(n)). [See comments.]
For n >= 0, a(A163511(n)) = A292942(n).
For n >= 1, a(n) + A292943(n) + A292945(n) = A243071(n).
PROG
(Scheme) (define (A292941 n) (if (<= n 2) (- n 1) (+ (if (= 1 (modulo n 6)) 1 0) (* 2 (A292941 (A252463 n))))))
KEYWORD
nonn
AUTHOR
Antti Karttunen, Sep 28 2017
STATUS
approved