login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284282
a(n) = the number k such that A030067(2k-1) = n, or 0 if n does not occur in the semi-Fibonacci sequence A030067.
2
0, 1, 2, 3, 0, 4, 5, 0, 0, 6, 0, 7, 0, 0, 0, 0, 8, 9, 0, 0, 0, 0, 0, 10, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18
OFFSET
0,3
COMMENTS
Otherwise said, a(n) = round(m/2) = (m+1)/2, where m is the smallest index such that A030067(m) = n.
Any integer n which occurs in A030067 first occurs as an odd-indexed term A030067(2k-1) = A030068(k-1), and thereafter at indices (2k-1)*2^j, j=1,2,3,... (Both of these statements follow immediately from the definition of even-indexed terms of A030067.)
It is easy to see that no n can occur a second time as an odd-indexed term in A030067. This follows from the definition of these terms A030067(2k+1) = A030067(2k-1) + A030067(k), which shows that the subsequence of odd-indexed terms (A030068) is strictly increasing, and therefore equal to the range (or: set) of all semi-Fibonacci numbers.
Setting all nonzero terms to 1, this sequence is the characteristic function of A030068 (up to the offset).
MATHEMATICA
a[n_] := a[n] = Which[n == 1, 1, EvenQ@ n, a[n/2], True, a[n - 1] + a[n - 2]]; With[{nn = 87}, Function[s, Function[t, {0}~Join~ReplacePart[t, Map[# -> First@ Lookup[s, #] &, TakeWhile[Keys@ s, # <= nn &]]]]@ ConstantArray[0, nn]]@ PositionIndex@ Array[a[2 # - 1] &, 10^3]] (* Michael De Vlieger, Mar 25 2017, Version 10, after Jean-François Alcover at A030067 *)
PROG
(PARI) A284282(n)=setsearch(A030068_vec, n) \\ Use, e.g., A030068(100) to compute the global variable A030068_vec far enough for n <= 22880. - M. F. Hasler, Mar 25 2017
CROSSREFS
Cf. A030067 (semi-Fibonacci sequence), A030068 (bisection of odd-indexed terms, also equal to the range = set of all possible values or semi-Fibonacci numbers).
Sequence in context: A140502 A175434 A154860 * A132774 A294721 A300816
KEYWORD
nonn
AUTHOR
M. F. Hasler, Mar 24 2017
STATUS
approved