The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A284284 Let x be the sum of the divisors d_i of k such that d_i | sigma(k). Sequence lists the numbers k for which x^3 = sigma(k). 2
 1, 690, 714, 75432, 81172, 81192, 81624, 82248, 84196, 305320, 312040, 315880, 619542, 639198, 646758, 665874, 684342, 737694, 743958, 750114, 751626, 761454, 762966, 763614, 4349280, 4651680, 4789920, 4939680, 4981920, 5259936, 5325216, 5428896, 5474976 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Subset of A020477. LINKS Giovanni Resta, Table of n, a(n) for n = 1..200 EXAMPLE Divisors of 690 are 1, 2, 3, 5, 6, 10, 15, 23, 30, 46, 69, 115, 138, 230, 345, 690 and sigma(690) = 1728. Then: 1728 / 1 = 1728, 1728 / 2 = 864, 1728 /  3 = 576, 1728 / 6 = 288 and (1 + 2 + 3 + 6)^2 = 12^3 = 1728. MAPLE with(numtheory): P:=proc(q) local a, k, n, x; for n from 1 to q do a:=sort([op(divisors(n))]); x:=0; for k from 1 to nops(a)-1 do if type(sigma(n)/a[k], integer) then x:=x+a[k]; fi; od; if x^3=sigma(n) then print(n); fi; od; end: P(10^6); MATHEMATICA Select[Range[10^5], (d = DivisorSigma[1, #]; IntegerQ[ d^(1/3)] && d == DivisorSigma[1, GCD[d, #]]^3) &] (* Giovanni Resta, Mar 28 2017 *) CROSSREFS Cf. A000203, A020477, A284283. Sequence in context: A259512 A078877 A204145 * A115177 A263114 A214335 Adjacent sequences:  A284281 A284282 A284283 * A284285 A284286 A284287 KEYWORD nonn AUTHOR Paolo P. Lava, Mar 24 2017 EXTENSIONS a(1), a(25)-a(33) from Giovanni Resta, Mar 28 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 17 17:59 EDT 2022. Contains 356189 sequences. (Running on oeis4.)