login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132774
A natural number operator.
3
1, 2, 3, 0, 4, 5, 0, 0, 6, 7, 0, 0, 0, 8, 9, 0, 0, 0, 0, 10, 11, 0, 0, 0, 0, 0, 12, 13, 0, 0, 0, 0, 0, 0, 14, 15, 0, 0, 0, 0, 0, 0, 0, 16, 17, 0, 0, 0, 0, 0, 0, 0, 0, 18, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 22, 23
OFFSET
1,2
COMMENTS
Row sums = A016813: (1, 5, 9, 13, ...).
A132774 * [1, 2, 3, ...] = A033951.
FORMULA
As an infinite lower triangular matrix, (1, 3, 5, ...) in the main diagonal and (2, 4, 6, ...) in the subdiagonal; with the rest zeros.
From Stefano Spezia, Dec 21 2021: (Start)
T(n, k) = 2*n - 1 if n = k, T(n, k) = 2*(n - 1) if n - k = 1, otherwise T(n, k) = 0.
G.f.: x*y*(1 + x*(2 + y))/(1 - x*y)^2. (End)
EXAMPLE
First few rows of the triangle are:
1;
2, 3;
0, 4, 5;
0, 0, 6, 7;
0, 0, 0, 8, 9;
0, 0, 0, 0, 10, 11;
...
MATHEMATICA
T[n_, k_]:=If[n==k, 2n-1, If[n-k==1, 2(n-1), 0]]; Flatten[Table[T[n, k], {n, 12}, {k, n}]] (* Stefano Spezia, Dec 21 2021 *)
Join[{1}, Flatten[{#, PadRight[{}, #[[1]]/2, 0]}&/@Partition[Range[2, 30], 2]]] (* Harvey P. Dale, Mar 24 2024 *)
Join[{1}, Flatten[Table[Join[Range[2n, 2n+1], PadRight[{}, n, 0]], {n, 20}]]] (* Harvey P. Dale, Mar 25 2024 *)
CROSSREFS
Cf. A016813 (row sums), A033951, A060747 (main diagonal).
Sequence in context: A175434 A154860 A284282 * A294721 A300816 A007945
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Aug 28 2007
EXTENSIONS
More terms from Stefano Spezia, Dec 21 2021
STATUS
approved