login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282944
Numbers k such that 3*2^k + 1 is a prime factor of a generalized Fermat number 11^(2^m) + 1 for some m.
1
6, 30, 36, 66, 276, 353, 2816, 3189, 34350, 48150, 80190, 1832496, 2291610, 5082306, 10829346
OFFSET
1,1
LINKS
Anders Björn and Hans Riesel, Factors of generalized Fermat numbers, Math. Comp. 67 (1998), no. 221, pp. 441-446.
Anders Björn and Hans Riesel, Table errata to "Factors of generalized Fermat numbers", Math. Comp. 74 (2005), no. 252, p. 2099.
Anders Björn and Hans Riesel, Table errata 2 to "Factors of generalized Fermat numbers", Math. Comp. 80 (2011), pp. 1865-1866.
MATHEMATICA
lst = {}; Do[p = 3*2^n + 1; If[PrimeQ[p] && IntegerQ@Log[2, MultiplicativeOrder[11, p]], AppendTo[lst, n]], {n, 3189}]; lst
PROG
(Magma) SetDefaultRealField(RealField(350)); IsInteger := func<k | k eq Floor(k)>; [n: n in [2..353] | IsPrime(k) and IsInteger(Log(2, Modorder(11, k))) where k is 3*2^n+1];
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
STATUS
approved