login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188062
Triangle of the value of Bell polynomials of the second kind B(n,m)(6,30,120,360,720,720) in row n, column m.
2
6, 30, 36, 120, 540, 216, 360, 5580, 6480, 1296, 720, 46800, 124200, 64800, 7776, 720, 331920, 1895400, 1976400, 583200, 46656, 0, 1995840, 24736320, 46947600, 25855200, 4898880, 279936, 0, 9979200, 284074560, 946527120, 876355200, 297198720, 39191040, 1679616, 0, 39916800, 2900620800
OFFSET
1,1
COMMENTS
B(n,m)(6*x^5,30*x^4,120*x^3,360*x^2,720*x,720) = B(n,m)*x^(6*m-n) allows the computation of the Bell polynomials for a generalized set of arguments with a single parameter x.
LINKS
Ch. A. Charalambides, On the generalized discrete distributions and the Bell polynomials, Sankhya: Ind. J. Stat. B 39 (10) (1977) 36-44
F. T. Howard, A theorem relating potential and bell polynomials, Discr. Math. 39 (2) (1982) 128-143.
Vladimir Kruchinin, Derivation of Bell Polynomials of the Second Kind , arXiv:1104.5065 [math.CO], 2011.
Eric W. Weisstein, Bell Polynomial
FORMULA
B(n,m) = n!/m!*sum_{k=0..m} binomial(m,k)*binomial(6*k,n)*(-1)^(m-k).
B(n,m) = n!/m! *sum_{k=0..n-m} sum_{j=0..n} 3^j *binomial(j,n-3*k-3*m+2*j) *binomial(k+m,j) *binomial(m,k) *2^(m-k).
EXAMPLE
Table begins:
6;
30, 36;
120, 540, 216;
360, 5580, 6480, 1296;
720, 46800, 124200, 64800, 7776;
MAPLE
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> `if`(n<6, [6, 30, 120, 360, 720, 720][n+1], 0), 9); # Peter Luschny, Jan 29 2016
MATHEMATICA
b[n_, m_] := n!/m!*Sum[ Sum[ 3^j*Binomial[j, n - 3*k - 3*m + 2*j]*Binomial[k + m, j], {j, 0, n}]*Binomial[m, k]*2^(m - k), {k, 0, n - m}]; Table[b[n, m], {n, 1, 9}, {m, 1, n}] // Flatten (* Jean-François Alcover, Feb 21 2013, translated from Maxima *)
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
B = BellMatrix[Function[n, If[n<6, {6, 30, 120, 360, 720, 720}[[n+1]], 0]], rows];
Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
PROG
(Maxima)
B(n, m):=n!/m!*sum(sum(3^j*binomial(j, n-3*k-3*m+2*j)*binomial(k+m, j), j, 0, n)*binomial(m, k)*2^(m-k), k, 0, n-m);
CROSSREFS
Sequence in context: A175497 A161812 A282944 * A056153 A062515 A316532
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Mar 23 2011
STATUS
approved