login
A188061
Numbers k such that (product of divisors of k) == 1 (mod sum of divisors of k).
3
4, 9, 16, 25, 49, 55, 64, 81, 121, 161, 169, 209, 256, 289, 351, 361, 529, 551, 625, 649, 729, 841, 961, 1024, 1079, 1189, 1369, 1407, 1443, 1681, 1849, 2015, 2209, 2289, 2401, 2809, 2849, 2915, 2975, 3401, 3481, 3721, 3857, 4096, 4489, 4599, 4887, 5041, 5329, 6049, 6241, 6319, 6561, 6889, 6993, 7921, 8569, 9409, 9701
OFFSET
1,1
COMMENTS
This sequence includes every number of the form p^(2n), where p is a prime. Other semiprime members include 55, 161, 209, 551, 649, 1079, 1189, 3401, 6049, 6319, 9701. Are there infinitely many nonsquare semiprimes in the sequence? Is there some simpler property of primes p and q that puts pq in this sequence?
FORMULA
A187680(a(n)) = 1.
MATHEMATICA
mptQ[n_]:=Module[{dn=Divisors[n]}, Mod[Times@@dn, Total[dn]]==1]; Join[{1}, Select[Range[10000], mptQ]] (* Harvey P. Dale, Mar 28 2011 *)
PROG
(PARI) proddiv(n)=local(t); t=numdiv(n); if(t%2==0, n^(t\2), sqrtint(n)^t)
for(n=1, 10000, if(Mod(proddiv(n), sigma(n))==1, print1(n", ")))
(Python)
from gmpy2 import powmod, is_square, isqrt
from sympy import divisor_sigma
A188061_list = [n for n in range(1, 10**4) if powmod(isqrt(n) if is_square(n) else n, int(divisor_sigma(n, 0))//(1 if is_square(n) else 2), int(divisor_sigma(n, 1))) == 1] # Chai Wah Wu, Mar 10 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Juri-Stepan Gerasimov, Mar 20 2011, Jun 18 2011
EXTENSIONS
More terms from Franklin T. Adams-Watters, Mar 21 2011
STATUS
approved