login
A197880
Squarefree part of ((2n-1)!)^(2n-3).
1
1, 6, 30, 35, 70, 77, 3003, 1430, 24310, 230945, 969969, 4056234, 676039, 312018, 1292646, 33393355, 2203961430, 90751353, 3357800061, 1531628098, 156991880045, 5786272150230, 105204948186, 107492012277, 35830670759, 3654728417418, 14900046624858
OFFSET
1,2
COMMENTS
These numbers are quadratic fields of extensions of polynomials of odd degree obtained by taken 2n-1 terms of expansion of e^x in power series at 0. All these polynomials have Galois group S(2n-1) over rationals.
FORMULA
a(n) = A007913(A134367(2*n-1)). - R. J. Mathar, Oct 25 2011
MAPLE
A134367 := proc(n)
(n!)^(n-2) ;
end proc:
A007913 := proc(n)
a := 1 ;
for pf in ifactors(n)[2] do
p := op(1, pf) ;
e := op(2, pf) ;
a := a*p^(e mod 2) ;
end do:
a ;
end proc:
A198480 := proc(n)
A007913( A134367(2*n-1)) ;
end proc:
seq(A198480(n), n=1..10) ; # R. J. Mathar, Oct 25 2011
MATHEMATICA
aa = {}; data = Table[kk = Sqrt[(n!)^(n - 2)], {n, 1, 100, 2}]; sp = data /. Sqrt[_] -> 1; sfp = data/sp; sfp^2
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Oct 25 2011
STATUS
approved