login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198481
Square root of the largest square dividing ((2n-1)!)^(2n-3).
2
1, 1, 240, 304819200, 3440500260470784000, 1827912356210202139164672000000000, 13482302715547740229948201750717130814259200000000000
OFFSET
1,3
COMMENTS
For the complementary squarefree parts see A197880.
FORMULA
a(n) = A000188(A134367(2*n-1)). - R. J. Mathar, Oct 25 2011
MAPLE
A000188 := proc(n)
a := 1 ;
for pf in ifactors(n)[2] do
p := op(1, pf) ;
e := op(2, pf) ;
a := a*p^(floor(e/2)) ;
end do:
a ;
end proc:
A198481 := proc(n)
A000188( A134367(2*n-1)) ;
end proc:
seq(A198481(n), n=1..10) ; # R. J. Mathar, Oct 25 2011
MATHEMATICA
aa = {}; data = Table[kk = Sqrt[(n!)^(n - 2)], {n, 1, 100, 2}]; sp = data /. Sqrt[_] -> 1; sfp = data/sp; sp
Sqrt[#]&/@Table[Max[Select[Divisors[((2n-1)!)^(2n-3)], IntegerQ[Sqrt[#]]&]], {n, 7}] (* Harvey P. Dale, May 24 2024 *)
CROSSREFS
Sequence in context: A270051 A028678 A159950 * A306151 A075046 A153423
KEYWORD
nonn
AUTHOR
Artur Jasinski, Oct 25 2011
STATUS
approved