login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282326
Greater of twin primes congruent to 1 (mod 30).
7
31, 61, 151, 181, 241, 271, 421, 571, 601, 661, 811, 1021, 1051, 1231, 1291, 1321, 1621, 1951, 2131, 2311, 2341, 2551, 2731, 2791, 2971, 3001, 3121, 3301, 3331, 3361, 3391, 3541, 3931, 4021, 4051, 4231, 4261, 4651, 4801, 5011, 5101, 5281, 5521, 5641, 5851
OFFSET
1,1
COMMENTS
The union of [A060229 and this sequence] is A132243.
The union of [{5, 7}, A282322, A282324 and this sequence] is the greater of twin primes sequence A006512.
The union of [{3, 5, 7}, A282321 to A060229 and this sequence] is the twin primes sequence A001097.
Number of terms less than 10^k, k=2,3,4,...: 2, 11, 72, 407, 2697, 19507, 146516, ... - Muniru A Asiru, Mar 05 2018
LINKS
MAPLE
select(n -> isprime(n-2) and isprime(n), [seq(30*k+1, k=0..300)]); # Muniru A Asiru, Mar 05 2018
MATHEMATICA
1 + Select[30 Range@ 200, AllTrue[# + {-1, 1}, PrimeQ] &] (* Michael De Vlieger, Mar 26 2018 *)
PROG
(PARI) list(lim)=my(v=List(), p=2); forprime(q=3, lim, if(q-p==2 && q%30==1, listput(v, q)); p=q); Vec(v) \\ Charles R Greathouse IV, Feb 14 2017
(GAP) Filtered(List([0..300], k -> 30*k+1), n -> IsPrime(n-2) and IsPrime(n)); # Muniru A Asiru, Mar 05 2018
KEYWORD
nonn
AUTHOR
Martin Renner, Feb 11 2017
STATUS
approved