login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282328
Coefficients in q-expansion of E_4*E_6^3, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.
3
1, -1272, 351432, 89559456, -28689603384, -3415837464144, -155926897275744, -3967939206760128, -65540990858009400, -777517458842153496, -7105797244669716432, -52584588767807410464, -326903749149928526688, -1755591468945924647184
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Eisenstein Series.
MATHEMATICA
terms = 14;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E4[x]*E6[x]^3 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
CROSSREFS
Cf. A004009 (E_4), A013973 (E_6).
Cf. A013974 (E_4*E_6 = E_10), A282287 (E_4*E_6^2), this sequence (E_4*E_6^3).
Sequence in context: A378455 A377417 A273000 * A187465 A325604 A230758
KEYWORD
sign
AUTHOR
Seiichi Manyama, Feb 12 2017
STATUS
approved