login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377417
Numbers t such that t + s(t) = s(s(t)), where s(t) is the sum of aliquot divisors of t (A001065(t)).
0
1272, 4632, 31632, 266712, 805152, 4897392, 94177392, 2928675264
OFFSET
1,1
COMMENTS
Equivalently, numbers t which satisfy the equation t = sigma(sigma(t) - t) - 2*(sigma(t) - t), where sigma(t) is the sum of divisors of t (A000203(t)).
The sum of aliquot divisors is also called the sum of aliquot parts, the aliquot sum or the sum of proper divisors (A001065).
a(9) > 10^10 (if it exists).
Let s^[m](t) denote m-fold iteration of s(t) (i.e., s^[0](t) = t and s^[m](t) = s(s^[m-1](t)).
The following table shows consecutive solutions t (t <= z) of the equation s^[m](t) = Sum_{i=0..m-1} s^[i](t) for m = 3,4,5,...,30 (solutions for m = 1 are perfect numbers, solutions for m = 2 are in the data section):
---------------------------------------------------------------------------------------------
m | z | t | (m+1)-tuple (s^[0](t), s^[1](t),...,s^[m](t))
---------------------------------------------------------------------------------------------
3 | 10^9 | 8880 | 8880, 19392, 32424, 60696 = 8880+19392+32424
| | 1468584 | 1468584, 2933016, 4399584, 8801184 = 1468584+2933016+4399584
4 | 10^9 | 285816 | 285816, 428784, 679032, 1160208, 2553840 = 285816+428784+
| | | +679032+1160208
5 | 10^9 | 3280592 | 3280592, 4415344, 4196952, 7343928, 12546072, 31782888 =
| | | = 3280592+4415344+4196952+7343928+12546072
6,...,30 | 10^8 | - |
---------------------------------------------------------------------------------------------
EXAMPLE
a(1) = 1272 because s(1272) = 1968, s(1968) = 3240 = 1272 + 1968.
a(2) = 4632 because s(4632) = 7008, s(7008) = 11640 = 4632 + 7008.
a(3) = 31632 because s(31632) = 50208, s(50208) = 81840 = 31632 + 50208.
PROG
(Maxima)
(n:1, for t:2 thru 100000000 do
(x:divsum(t)-t, y:divsum(x)-x,
if t+x=y then
(print(n, "" , t ), n:n+1)));
(PARI) isok(t) = t == sigma(sigma(t) - t) - 2*(sigma(t) - t); \\ Michel Marcus, Oct 29 2024
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Lechoslaw Ratajczak, Oct 27 2024
STATUS
approved