login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282324
Greater of twin primes congruent to 19 (mod 30).
7
19, 109, 139, 199, 229, 349, 619, 829, 859, 1279, 1429, 1489, 1609, 1669, 1699, 1789, 1879, 1999, 2029, 2089, 2239, 2269, 2659, 2689, 3169, 3259, 3469, 3529, 3559, 3769, 3919, 4129, 4159, 4219, 4339, 4519, 4549, 4639, 4789, 4969, 5419, 5479, 5659, 5869, 6199
OFFSET
1,1
COMMENTS
The union of [A282323 and this sequence] is A132242.
The union of [{5, 7}, A282322, this sequence and A282326] is the greater of twin primes sequence A006512.
The union of [{3, 5, 7}, A282321 to A282326] is the twin primes sequence A001097.
Number of terms less than 10^k, k=2,3,4,...: 1, 9, 64, 414, 2734, 19674, 146953, ... - Muniru A Asiru, Feb 09 2018
LINKS
MAPLE
a:={}:
for i from 1 to 1229 do
if isprime(ithprime(i)-2) and ithprime(i) mod 30 = 19 then
a:={op(a), ithprime(i)}:
fi:
od:
a;
# More efficient
select(n -> isprime(n-2) and isprime(n), [seq(30*k+19, k=0..220)]); # Muniru A Asiru, Jan 30 2018
MATHEMATICA
Select[Prime[Range[1000]], PrimeQ[# - 2] && Mod[#, 30] == 19 &] (* Vincenzo Librandi, Feb 13 2017 *)
PROG
(Magma) [p: p in PrimesUpTo(7000) | IsPrime(p-2) and p mod 30 eq 19 ]; // Vincenzo Librandi, Feb 13 2017
(PARI) list(lim)=my(v=List(), p=2); forprime(q=3, lim, if(q-p==2 && q%30==19, listput(v, q)); p=q); Vec(v) \\ Charles R Greathouse IV, Feb 14 2017
(GAP) Filtered(List([1..220], k -> 30*k-11), n -> IsPrime(n) and IsPrime(n-2)); # Muniru A Asiru, Feb 02 2018
KEYWORD
nonn
AUTHOR
Martin Renner, Feb 11 2017
STATUS
approved