login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281825
Numerators of the binomial transform of A198631(n)/A006519(n+1) with A198631(1) = -1 instead of 1.
0
1, 1, 0, -3, -2, -7, -4, -23, -6, -45, -8, 655, -10, -5483, -12, 929361, -14, -3202321, -16, 221930513, -18, -4722116559, -20, 968383680659, -22, -14717667114197, -24, 2093660879252571, -26, -86125672563201235, -28, 129848163681107301025, -30
OFFSET
0,4
COMMENTS
What is the correct name for the rational sequence c(n) = 1, -1/2, 0, -1/4, 0, 1/2, 0, -17/8, 0, 31/2, 0, ... (a variant of the second fractional Euler numbers)?
Its binomial transform is f(n) = 1, 1/2, 0, -3/4, -2, -7/2, -4, -23/8, -6, -45/2, -8, 655/4, -10, ... = a(n)/A006519(n+1).
FORMULA
By definition f(0) - c(0), f(1) + c(1), f(2) - c(2), f(3) + c(3), ... is an autosequence of the first kind, here 1 - 1 = 0, 1/2 - 1/2 = 0, 0 - 0 = 0, -3/4 - 1/4 = -1, -2 - 0 = -2, -7/2 + 1/2 = -3, ... i.e., t(n) = 0, 0, followed by -A001477(n), not in the OEIS, but the corresponding autosequence of the second kind is: A199969 = 0, 0, -2, -3, -4, ... Hence f(n) from c(n) and t(n).
MAPLE
A198631 := proc(n)
1/(1+exp(-x)) ;
coeftayl(%, x=0, n) ;
numer(%*n!) ;
end proc:
A006519 := proc(n)
2^padic[ordp](n, 2) ;
end proc:
L := [seq( A198631(n)/A006519(n+1), n=0..40)] ;
subsop(2=-1/2, L) ;
b := BINOMIAL(%) ;
for i from 1 to nops(b) do
printf("%d, ", numer(b[i])) ;
end do: # R. J. Mathar, Feb 21 2017
CROSSREFS
KEYWORD
sign
AUTHOR
Paul Curtz, Jan 31 2017
STATUS
approved