login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238398
Numerators of inverse binomial transform of A198631(n)/A006519(n+1) with -1 instead of A198631(1)=1.
1
1, -3, 2, -11, 4, -11, 6, -39, 8, -49, 10, 647, 12, -5487, 14, 929329, 16, -3202325, 18, 221930505, 20, -4722116563, 22, 968383680643, 24, -14717667114201, 26, 2093660879252563, 28, -86125672563201239, 30, 129848163681107300961, 32
OFFSET
0,2
COMMENTS
From modified fractional Euler numbers.
Inverse binomial transform:
1, -3/2, 2, -11/4, 4, -11/2, 6, -39/8, 8, -49/2, 10, 647/4, 12, -5487/2,... = a(n)/b(n). b(2n) = A004277(n).
Difference table of c(n) = 1, -1/2, 0, -1/4,... :
1, -1/2, 0, -1/4, 0, 1/2, 0,...
-3/2, 1/2, -1/4, 1/4, 1/2, -1/2, -17/8,...
2, -3/4, 1/2, 1/4, -1, -13/8, 17/4,...
-11/4, 5/4, -1/4, -5/4, -5/8, 47/8, 73/8,...
4, -3/2, -1, 5/8, 13/2, 13/4, -107/2,...
-11/2, 1/2, 13/8, 47/8, -13/4, -227/4, -227/8,
6, 9/8, 17/4, -73/8, -107/2, 227/8, 2957/4,...
etc.
c(n) + a(n)/b(n) = 2, -2, 2, -3, 4, -5, 6, -7, 8, -9,... = A233583(n+1) signed. (a(n) discovered in 2013)
MATHEMATICA
max = 40; (* b = A198631 *) b[0] = 1; b[1] = -1; b[n_] := Numerator[EulerE[n, 1]/(2^n-1)]; bb = Table[b[n]/2^IntegerExponent[n+1, 2], {n, 0, max}]; a[n_] := Differences[bb, n] // First // Numerator ; Table[a[n], {n, 0, max}]
CROSSREFS
Cf. A235774.
Sequence in context: A152177 A110326 A112061 * A065014 A013945 A072656
KEYWORD
sign
AUTHOR
Paul Curtz, Feb 26 2014
STATUS
approved