|
|
A281823
|
|
Least number k such that (k-n)^2 contains k as a substring.
|
|
2
|
|
|
1, 12, 1, 16, 108, 1, 4, 2, 116, 3, 1, 1, 1, 1, 1, 1, 4, 2, 2, 2, 1, 3, 1, 9, 4, 2, 4, 2, 5, 2, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 3, 2, 1, 3, 1, 2, 3, 3, 3, 2, 4, 3, 1, 4, 1, 1, 4, 2, 3, 2, 4, 2, 1, 2, 1, 4, 2, 6
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
EXAMPLE
|
a(1) = 12 because (12 - 1)^2 = 11^2 = 121 contains 12 as a substring and it is the least number with this property.
|
|
MAPLE
|
with(numtheory): P:= proc(q) local a, b, d, j, k, n, ok;
for n from 0 to q do for k from 1 to q do a:=ilog10(k)+1; b:=(n-k)^2; d:=ilog10((k-n)^2)-ilog10(k)+1;
ok:=0; for j from 1 to d do if k=(b mod 10^a) then ok:=1; break; else b:=trunc(b/10); fi; od;
if ok=1 then print(k); break; fi; od; od; end: P(10^6);
|
|
MATHEMATICA
|
nk[n_]:=Module[{k=1}, While[SequenceCount[IntegerDigits[(k-n)^2], IntegerDigits[ k]]==0, k++]; k]; Array[lnk, 90, 0] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 13 2021 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
Entries, Maple code and b-file corrected at the suggestion of Harvey P. Dale, Feb 28 2017.
|
|
STATUS
|
approved
|
|
|
|