The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A213579 Rectangular array:  (row n) = b**c, where b(h) = F(h), c(h) = n-1+h, where F=A000045 (Fibonacci numbers), n>=1, h>=1, and ** = convolution. 7
 1, 3, 2, 7, 5, 3, 14, 11, 7, 4, 26, 21, 15, 9, 5, 46, 38, 28, 19, 11, 6, 79, 66, 50, 35, 23, 13, 7, 133, 112, 86, 62, 42, 27, 15, 8, 221, 187, 145, 106, 74, 49, 31, 17, 9, 364, 309, 241, 178, 126, 86, 56, 35, 19, 10, 596, 507, 397, 295, 211, 146, 98, 63, 39, 21 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Principal diagonal: A213580. Antidiagonal sums: A053808. Row 1, (1,1,2,3,5,...)**(1,2,3,4,...): A001924. Row 2, (1,1,2,3,5,...)**(2,3,4,5,...): A023548. Row 3, (1,1,2,3,5,...)**(3,4,5,6,...): A023552. Row 4, (1,1,2,3,5,...)**(4,5,6,7,...): A210730. Row 5, (1,1,2,3,5,...)**(5,6,7,8,...): A210731. For a guide to related arrays, see A213500. LINKS Clark Kimberling, Antidiagonas n = 1..60, flattened FORMULA T(n,k) = 3*T(n,k-1) - 2*T(n,k-2) - T(n,k-3) + T(n,k-4). G.f. for row n: f(x)/g(x), where f(x) = n - (n-1)*x and g(x) = (1-x-x^2) *(1-x)^2. T(n, k) = Fibonacci(k+3) + n*Fibonacci(k+2) - (n+k+2). - G. C. Greubel, Jul 08 2019 EXAMPLE Northwest corner (the array is read by falling antidiagonals): 1....3....7....14...26...46 2....5....11...21...38...66 3....7....15...28...50...86 4....9....19...35...62...106 5....11...23...42...74...126 6....13...27...49...86...146 MATHEMATICA (* First program *) b[n_]:= Fibonacci[n]; c[n_]:= n; T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}] TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]] Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213579 *) r[n_]:= Table[T[n, k], {k, 40}] d = Table[T[n, n], {n, 1, 40}] (* A213580 *) s[n_]:= Sum[T[i, n+1-i], {i, 1, n}] s1 = Table[s[n], {n, 1, 50}] (* A053808 *) (* Second program *) Table[Fibonacci[n-k+4] +k*Fibonacci[n-k+3] -(n+3), {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jul 08 2019 *) PROG (PARI) t(n, k) = fibonacci(n-k+4) + k*fibonacci(n-k+3) - (n+3); for(n=1, 12, for(k=1, n, print1(t(n, k), ", "))) \\ G. C. Greubel, Jul 08 2019 (MAGMA) [[Fibonacci(k+3) + n*Fibonacci(k+2) -(n+k+2): k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jul 08 2019 (Sage) [[fibonacci(k+3) + n*fibonacci(k+2) -(n+k+2) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 08 2019 (GAP) Flat(List([1..12], n-> List([1..n], k-> Fibonacci(k+3) + n*Fibonacci(k+2) -(n+k+2) ))) # G. C. Greubel, Jul 08 2019 CROSSREFS Cf. A000045, A213500. Sequence in context: A281825 A011384 A128140 * A137225 A213777 A118834 Adjacent sequences:  A213576 A213577 A213578 * A213580 A213581 A213582 KEYWORD nonn,tabl,easy AUTHOR Clark Kimberling, Jun 18 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 19:02 EST 2021. Contains 349424 sequences. (Running on oeis4.)