login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A213582 Rectangular array:  (row n) = b**c, where b(h) = -1 + 2^h, c(h) = n-1+h, n>=1, h>=1, and ** = convolution. 4
1, 5, 2, 16, 9, 3, 42, 27, 13, 4, 99, 68, 38, 17, 5, 219, 156, 94, 49, 21, 6, 466, 339, 213, 120, 60, 25, 7, 968, 713, 459, 270, 146, 71, 29, 8, 1981, 1470, 960, 579, 327, 172, 82, 33, 9, 4017, 2994, 1972, 1207, 699, 384, 198, 93, 37, 10, 8100, 6053, 4007, 2474, 1454, 819, 441, 224, 104, 41, 11 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Principal diagonal: A213583.

Antidiagonal sums: A156928.

Row 1, (1,3,7,15,31,...)**(1,2,3,4,5,...): A002662.

Row 2, (1,3,7,15,31,...)**(2,3,4,5,6,...)

Row 3, (1,3,7,15,31,...)**(3,4,5,6,7,...)

For a guide to related arrays, see A213500.

LINKS

Clark Kimberling, Antidiagonals n = 1..60, flattened

FORMULA

T(n,k) = 5*T(n,k-1) - 9*T(n,k-2) + 7*T(n,k-3) - 2*T(n,k-4).

G.f. for row n: f(x)/g(x), where f(x) = n - (n-1)*x and g(x) = (1-2*x) *(1-x)^3.

T(n,k) = 2*(n+1)*(2^k - 1) - k*(k + 2*n + 3)/2. - G. C. Greubel, Jul 08 2019

EXAMPLE

Northwest corner (the array is read by falling antidiagonals):

1...5....16...42....99....219

2...9....27...68....156...339

3...13...38...94....213...459

4...17...49...120...270...579

5...21...60...146...327...699

6...25...71...172...384...819

MATHEMATICA

(* First program *)

b[n_]:= 2^n - 1; c[n_]:= n;

T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]

TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]

Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213582 *)

r[n_]:= Table[T[n, k], {k, 40}]

Table[T[n, n], {n, 1, 40}] (* A213583 *)

s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]

Table[s[n], {n, 1, 50}] (* A156928 *)

(* Second program *)

Table[2*(k+1)*(2^(n-k+1) -1) -(n-k+1)*(n+k+4)/2, {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jul 08 2019 *)

PROG

(PARI) t(n, k) = 2*(k+1)*(2^(n-k+1) -1) -(n-k+1)*(n+k+4)/2;

for(n=1, 12, for(k=1, n, print1(t(n, k), ", "))) \\ G. C. Greubel, Jul 08 2019

(MAGMA) [[2*(k+1)*(2^(n-k+1) -1) -(n-k+1)*(n+k+4)/2: k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jul 08 2019

(Sage) [[2*(k+1)*(2^(n-k+1) -1) -(n-k+1)*(n+k+4)/2 for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 08 2019

(GAP) Flat(List([1..12], n-> List([1..n], k-> 2*(k+1)*(2^(n-k+1) -1) -(n-k+1)*(n+k+4)/2 ))) # G. C. Greubel, Jul 08 2019

CROSSREFS

Cf. A213500, A213571.

Sequence in context: A298630 A248258 A279150 * A111267 A282067 A281842

Adjacent sequences:  A213579 A213580 A213581 * A213583 A213584 A213585

KEYWORD

nonn,tabl,easy

AUTHOR

Clark Kimberling, Jun 19 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 20 04:43 EDT 2021. Contains 345157 sequences. (Running on oeis4.)