login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213582
Rectangular array: (row n) = b**c, where b(h) = -1 + 2^h, c(h) = n-1+h, n>=1, h>=1, and ** = convolution.
4
1, 5, 2, 16, 9, 3, 42, 27, 13, 4, 99, 68, 38, 17, 5, 219, 156, 94, 49, 21, 6, 466, 339, 213, 120, 60, 25, 7, 968, 713, 459, 270, 146, 71, 29, 8, 1981, 1470, 960, 579, 327, 172, 82, 33, 9, 4017, 2994, 1972, 1207, 699, 384, 198, 93, 37, 10, 8100, 6053, 4007, 2474, 1454, 819, 441, 224, 104, 41, 11
OFFSET
1,2
COMMENTS
Principal diagonal: A213583.
Antidiagonal sums: A156928.
Row 1, (1,3,7,15,31,...)**(1,2,3,4,5,...): A002662.
Row 2, (1,3,7,15,31,...)**(2,3,4,5,6,...)
Row 3, (1,3,7,15,31,...)**(3,4,5,6,7,...)
For a guide to related arrays, see A213500.
LINKS
FORMULA
T(n,k) = 5*T(n,k-1) - 9*T(n,k-2) + 7*T(n,k-3) - 2*T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = n - (n-1)*x and g(x) = (1-2*x) *(1-x)^3.
T(n,k) = 2*(n+1)*(2^k - 1) - k*(k + 2*n + 3)/2. - G. C. Greubel, Jul 08 2019
EXAMPLE
Northwest corner (the array is read by falling antidiagonals):
1...5....16...42....99....219
2...9....27...68....156...339
3...13...38...94....213...459
4...17...49...120...270...579
5...21...60...146...327...699
6...25...71...172...384...819
MATHEMATICA
(* First program *)
b[n_]:= 2^n - 1; c[n_]:= n;
T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213582 *)
r[n_]:= Table[T[n, k], {k, 40}]
Table[T[n, n], {n, 1, 40}] (* A213583 *)
s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
Table[s[n], {n, 1, 50}] (* A156928 *)
(* Second program *)
Table[2*(k+1)*(2^(n-k+1) -1) -(n-k+1)*(n+k+4)/2, {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jul 08 2019 *)
PROG
(PARI) t(n, k) = 2*(k+1)*(2^(n-k+1) -1) -(n-k+1)*(n+k+4)/2;
for(n=1, 12, for(k=1, n, print1(t(n, k), ", "))) \\ G. C. Greubel, Jul 08 2019
(Magma) [[2*(k+1)*(2^(n-k+1) -1) -(n-k+1)*(n+k+4)/2: k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jul 08 2019
(Sage) [[2*(k+1)*(2^(n-k+1) -1) -(n-k+1)*(n+k+4)/2 for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 08 2019
(GAP) Flat(List([1..12], n-> List([1..n], k-> 2*(k+1)*(2^(n-k+1) -1) -(n-k+1)*(n+k+4)/2 ))) # G. C. Greubel, Jul 08 2019
CROSSREFS
Sequence in context: A298630 A248258 A279150 * A364108 A367290 A111267
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Jun 19 2012
STATUS
approved