OFFSET
0,2
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 0..10000 (terms 0..200 from Indranil Ghosh, terms 201..3000 from Chai Wah Wu)
EXAMPLE
For n = 4, a few of the possible matrices are [0,4;2,1], [0,4;3,0], [0,4;3,4], [0,4;4,3], [1,0;0,1], [1,0;0,2], [1,0;0,4], [1,0;1,0], [1,0;1,1], [1,0;1,3], [2,2;3,0], [2,2;3,4], [2,2;4,3], [2,3;0,0], [2,3;0,2], [3,4;3,3], [3,4;4,0], [3,4;4,2], [4,0;0,1], [4,0;0,3], [4,0;1,0], ... There are 234 possibilities.
Here each of the matrices M is defined as M = [a,b;c,d] where a = M[1][1], b = M[1][2], c = M[2][1], d = M[2][2]. So, a(4) = 234.
PROG
(Python)
from sympy import isprime
def t(n):
....s=0
....for a in range(0, n+1):
........for b in range(0, n+1):
............for c in range(0, n+1):
................for d in range(0, n+1):
....................if isprime(a+b+c+d)==True:
........................s+=1
....return s
for i in range(0, 201):
....print str(i)+" "+str(t(i))
(PARI) a(n)=my(X=Pol(vector(n+1, i, 1))+O('x^(4*n)), Y=X^4, s); forprime(p=2, 4*n, s+=polcoeff(Y, p)); s \\ Charles R Greathouse IV, Feb 15 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Indranil Ghosh, Jan 23 2017
STATUS
approved