login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281550
Number of 2 X 2 matrices with all elements in 0..n such that the sum of the elements is prime.
1
0, 10, 46, 114, 234, 458, 826, 1370, 2090, 3010, 4174, 5658, 7534, 9930, 12954, 16662, 21074, 26242, 32246, 39182, 47186, 56386, 66874, 78798, 92290, 107434, 124282, 142942, 163550, 186266, 211250, 238626, 268526, 301134, 336610, 375086, 416678, 461454, 509434, 560662, 615182, 673106
OFFSET
0,2
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 0..10000 (terms 0..200 from Indranil Ghosh, terms 201..3000 from Chai Wah Wu)
EXAMPLE
For n = 4, a few of the possible matrices are [0,4;2,1], [0,4;3,0], [0,4;3,4], [0,4;4,3], [1,0;0,1], [1,0;0,2], [1,0;0,4], [1,0;1,0], [1,0;1,1], [1,0;1,3], [2,2;3,0], [2,2;3,4], [2,2;4,3], [2,3;0,0], [2,3;0,2], [3,4;3,3], [3,4;4,0], [3,4;4,2], [4,0;0,1], [4,0;0,3], [4,0;1,0], ... There are 234 possibilities.
Here each of the matrices M is defined as M = [a,b;c,d] where a = M[1][1], b = M[1][2], c = M[2][1], d = M[2][2]. So, a(4) = 234.
PROG
(Python)
from sympy import isprime
def t(n):
....s=0
....for a in range(0, n+1):
........for b in range(0, n+1):
............for c in range(0, n+1):
................for d in range(0, n+1):
....................if isprime(a+b+c+d)==True:
........................s+=1
....return s
for i in range(0, 201):
....print str(i)+" "+str(t(i))
(PARI) a(n)=my(X=Pol(vector(n+1, i, 1))+O('x^(4*n)), Y=X^4, s); forprime(p=2, 4*n, s+=polcoeff(Y, p)); s \\ Charles R Greathouse IV, Feb 15 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Indranil Ghosh, Jan 23 2017
STATUS
approved