login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248575
Rounded sums of the non-integer cube roots of n, as partitioned by the integer roots: round(Sum_{j=n^3+1..(n+1)^3-1} j^(1/3)).
6
0, 10, 46, 128, 272, 498, 822, 1264, 1840, 2570, 3470, 4560, 5856, 7378, 9142, 11168, 13472, 16074, 18990, 22240, 25840, 29810, 34166, 38928, 44112, 49738, 55822, 62384, 69440, 77010, 85110, 93760, 102976, 112778, 123182, 134208, 145872, 158194, 171190, 184880, 199280, 214410, 230286, 246928, 264352, 282578, 301622
OFFSET
0,2
COMMENTS
The fractional portions of each sum converge to 1/4 and 3/4, alternately.
The corresponding sums for square roots are given by A014105.
See A247112 for additional references to similar sequences and a conjecture.
FORMULA
a(n) = round(Sum_{j=n^3+1..(n+1)^3-1} j^(1/3)).
a(n) = ((n+1)*a(n-2) + 3*a(n-1) - 30)/(n-2) - 20.
(Thanks to Mathematica for finding the recursive formula from the first 12 terms, as a DifferenceRoot, reformatted here for OEIS format and verified to n = 100. I could not "coax" Mathematica to produce a simple non-recursive formula, but I suspect one exists.)
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5), for n > 5. This implies that the digital roots (A010888) of the terms are cyclic with a period of eighteen. - Ivan N. Ianakiev, Dec 13 2014
From Colin Barker, Dec 30 2014: (Start)
a(n) = (1-(-1)^n + 8*n + 18*n^2 + 12*n^3)/4.
G.f.: 2*x*(5*x^2 + 8*x + 5) / ((x-1)^4*(x+1)). (End)
From Amrit Awasthi, Jul 08 2024: (Start)
a(2n) = 24*n^3 + 18*n^2 + 4*n.
a(2n-1) = 24*n^3 - 18*n^2 + 4*n, for n >= 1. (End)
E.g.f.: (x*(19 +27*x + 6*x^2)*cosh(x) + (1 + 19*x + 27*x^2 + 6*x^3)*sinh(x))/2. - Stefano Spezia, Jul 17 2024
MATHEMATICA
RecurrenceTable [{a[n] == ((n + 1)*a[n - 2] + 3* a[n - 1] - 30)/(n - 2) - 20, a[1] == 10, a[2] == 46}, a, {n, 1, 50}]
PROG
(PARI) a(n) = round(sum(j=n^3+1, (n+1)^3-1, j^(1/3))); \\ Michel Marcus, Dec 09 2014
(PARI) concat(0, Vec(2*x*(5*x^2+8*x+5)/((x-1)^4*(x+1)) + O(x^100))) \\ Colin Barker, Dec 30 2014
(PARI) a(n)=n*(6*n^2+9*n+4)\/2 \\ Charles R Greathouse IV, Jul 16 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Richard R. Forberg, Dec 02 2014
STATUS
approved