login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A281090
Number of 2 X 2 matrices with all elements in {0,...,n} and prime permanent.
2
0, 1, 27, 85, 139, 307, 399, 765, 1043, 1517, 1889, 3021, 3523, 5299, 6269, 7671, 9209, 12729, 14179, 18995, 21307, 24991, 28303, 36261, 39307, 47541, 52833, 61173, 67113, 82125, 86601, 104655, 114695, 128069, 139213, 156653, 165819, 194591, 209753, 230835, 245457, 283887
OFFSET
0,3
LINKS
Chai Wah Wu, Table of n, a(n) for n = 0..1000 (terms 0..151 from Indranil Ghosh)
EXAMPLE
For n = 4, a few of the possible matrices are [0,1;3,3], [0,1;3,4], [0,2;1,0], [0,2;1,1], [0,2;1,2], [2,0;1,1], [2,0;2,1], [2,0;3,1], [2,0;4,1], [2,1;0,1], [4,3;1,1], [4,3;1,2], [4,3;1,4], [4,3;3,1], [4,3;3,2], [3,2;2,3], [3,2;4,1], [3,2;4,3], [3,3;0,1], [3,3;1,0], ... There are 139 possibilities. So, a(4) = 139.
PROG
(Python)
from sympy import isprime
def t(n):
s=0
for a in range(0, n+1):
for b in range(0, n+1):
for c in range(0, n+1):
for d in range(0, n+1):
if isprime(a*d+b*c)==True:
s+=1
return s
for i in range(0, 152):
print(f"{i} {t(i)}")
CROSSREFS
Sequence in context: A043962 A035074 A036925 * A260052 A028993 A262367
KEYWORD
nonn
AUTHOR
Indranil Ghosh, Jan 20 2017
STATUS
approved