login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281387
Pairs (x, y) of relatively prime positive integers such that (x^2 - 5)/y and (y^2 - 5)/x are both positive integers.
0
4, 11, 11, 29, 29, 76, 76, 199, 199, 521, 521, 1364, 1364, 3571, 3571, 9349, 9349, 24476, 24476, 64079, 64079, 167761, 167761, 439204, 439204, 1149851, 1149851, 3010349, 3010349, 7881196, 7881196, 20633239, 20633239, 54018521, 54018521, 141422324
OFFSET
1,1
COMMENTS
For x, y > 2, the solutions start with (4,11) -> (11, 29) -> (29, 76) -> ...
The sequence is infinite (see the proof in the second reference).
Consider the pairs of the form (a(2n-1), a(2n)). Limit_{n->oo} a(2n)/a(2n-1) = phi^2 = 2.618033988749894... (A104457).
Property: a(2n-1)^2 + a(2n)^2 = 3*a(2n-1)*a(2n) + 5.
Apparently a(2*n) = a(2*n+1) = A002878(n) for n >= 1. - Georg Fischer, Dec 05 2022
LINKS
Art of Problem Solving, Problem A112
Peter Vandendriessche and Hojoo Lee, Problems in Elementary Number Theory (see problem A112, p. 15). [Via Wayback Machine]
FORMULA
Conjectures from Chai Wah Wu, Jan 28 2024: (Start)
a(n) = 3*a(n-2) - a(n-4) for n > 4.
G.f.: x*(-4*x^3 - x^2 + 11*x + 4)/(x^4 - 3*x^2 + 1). (End)
MAPLE
nn:=10^6:a:=4:
for b from a+1 to nn do:
x:=(a^2-5)/b:y:=(b^2-5)/a:
if x>0 and y>0 and gcd(a, b)=1 and x=floor(x) and y=floor(y)
then
printf(`%d, `, a): printf(`%d, `, b):a:=b:
else fi:
od:
MATHEMATICA
nn = 10^6; a = 4; Reap[For[b = a+1, b <= nn, b++, x = (a^2-5)/b; y = (b^2-5)/a; If[x>0 && y>0 && GCD[a, b] == 1 && x == Floor[x] && y == Floor[y], Print[a, " ", b]; Sow[a]; Sow[b]; a = b]]][[2, 1]] (* adapted from Maple *)
(* Second program: *)
Clear[a]; a[n_] := 2^(-n-2)*((7-3*Sqrt[5])*(1-Sqrt[5])^n-(-Sqrt[5]-1)^(n+1) - (Sqrt[5]-1)^(n+1) + (3*Sqrt[5]+7)*(Sqrt[5]+1)^n); Table[a[n] // Simplify, {n, 1, 36}] (* Jean-François Alcover, Jan 25 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jan 21 2017
STATUS
approved