login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355608
Zeroless numbers k such that x^2 - s*x + p has only integer roots, where s and p denote the sum and product of the digits of k respectively.
1
4, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 122, 134, 143, 146
OFFSET
1,1
COMMENTS
Intersection of A052382 (zeroless numbers) and A355497.
There are respectively 1, 81, 52, 247, 650, 2335, 3129, 9100, 20682 terms with 1, 2, ..., 9 digits.
LINKS
EXAMPLE
k = 4 is a term, since 4 is zeroless, the sum of the digits of 4 is 4, the product of the digits of 4 is 4 and the root 2 of x^2 - 4x + 4 is an integer.
MAPLE
isA355608 := proc(n)
local dgs, p, s ;
dgs := convert(n, base, 10) ;
p := mul(d, d=dgs) ;
s := add(d, d=dgs) ;
if p <> 0 then
-s/2+sqrt(s^2/4-p) ;
if type(simplify(%), integer) then
-s/2-sqrt(s^2/4-p) ;
if type(simplify(%), integer) then
true ;
else
false ;
end if;
else
false ;
end if;
else
false ;
end if ;
end proc:
for n from 1 to 180 do
if isA355608(n) then
printf("%d, ", n) ;
end if;
end do: # R. J. Mathar, Jan 24 2023
PROG
(PARI) is(n)=my(v=digits(n), c=vecprod(v)); c&& issquare(vecsum(v)^2-4*c)
CROSSREFS
Cf. A007953, A007954, A052382 (zeroless numbers).
Sequence in context: A168212 A014449 A281387 * A098060 A268232 A285633
KEYWORD
base,nonn
AUTHOR
Jean-Marc Rebert, Jul 09 2022
STATUS
approved