login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355607
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. (1 + x)^(x^k).
6
1, 1, 1, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, -3, 0, 1, 0, 0, 6, 20, 0, 1, 0, 0, 0, -12, -90, 0, 1, 0, 0, 0, 24, 40, 594, 0, 1, 0, 0, 0, 0, -60, 180, -4200, 0, 1, 0, 0, 0, 0, 120, 240, -1512, 34544, 0, 1, 0, 0, 0, 0, 0, -360, -1260, 11760, -316008, 0, 1, 0, 0, 0, 0, 0, 720, 1680, 28224, -38880, 3207240, 0
OFFSET
0,9
LINKS
FORMULA
T(0,k) = 1 and T(n,k) = -(n-1)! * Sum_{j=k+1..n} (-1)^(j-k) * j/(j-k) * T(n-j,k)/(n-j)! for n > 0.
T(n,k) = n! * Sum_{j=0..floor(n/(k+1))} Stirling1(n-k*j,j)/(n-k*j)!.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 0, 0, 0, 0, 0, 0, ...
0, 2, 0, 0, 0, 0, 0, ...
0, -3, 6, 0, 0, 0, 0, ...
0, 20, -12, 24, 0, 0, 0, ...
0, -90, 40, -60, 120, 0, 0, ...
0, 594, 180, 240, -360, 720, 0, ...
PROG
(PARI) T(n, k) = n!*sum(j=0, n\(k+1), stirling(n-k*j, j, 1)/(n-k*j)!);
CROSSREFS
Columns k=1..4 give A007113, A007121, (-1)^n * A353229(n), A354625.
Sequence in context: A143251 A115235 A355619 * A253184 A242086 A160973
KEYWORD
sign,tabl,look
AUTHOR
Seiichi Manyama, Jul 09 2022
STATUS
approved