login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007121
Expansion of e.g.f. ( (1+x)^x )^x.
(Formerly M4099)
4
1, 0, 0, 6, -12, 40, 180, -1512, 11760, -38880, 20160, 2106720, -22381920, 173197440, -703999296, -1737489600, 86030380800, -1149696737280, 11455162974720, -89560399541760, 636617260339200, -6318191386644480, 139398889956480000, -3797936822885990400
OFFSET
0,4
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
FORMULA
a(n) = n!*Sum_{k=0..floor(n/3)} Stirling1(n-2*k,k)/(n-2*k)!. - Vladimir Kruchinin, Dec 13 2011
a(0) = 1; a(n) = -(n-1)! * Sum_{k=3..n} (-1)^k * k/(k-2) * a(n-k)/(n-k)!. - Seiichi Manyama, Jul 09 2022
MAPLE
A007121 := proc(n)
n!*coeftayl( (1+x)^(x^2), x=0, n) ;
end proc:
seq(A007121(n), n=0..40) ; # R. J. Mathar, Dec 15 2011
MATHEMATICA
With[{nn=30}, CoefficientList[Series[((1+x)^x)^x, {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Aug 24 2014 *)
PROG
(Maxima)
a(n):=sum(stirling1(n-2*k, k)/(n-2*k)!, k, 0, n/3); /* Vladimir Kruchinin, Dec 13 2011 */
(PARI) a(n) = n!*sum(k=0, n\3, stirling(n-2*k, k, 1)/(n-2*k)!); \\ Seiichi Manyama, Jul 09 2022
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-(i-1)!*sum(j=3, i, (-1)^j*j/(j-2)*v[i-j+1]/(i-j)!)); v; \\ Seiichi Manyama, Jul 09 2022
CROSSREFS
Cf. A240989.
Sequence in context: A185616 A307181 A052747 * A356910 A353228 A366752
KEYWORD
sign
AUTHOR
EXTENSIONS
Signs added by R. J. Mathar, Vladimir Kruchinin, Dec 15 2011
STATUS
approved