login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242086
Triangle read by rows: T(n,k) is the number of compositions of n into odd parts with first part k.
0
1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 3, 0, 1, 0, 1, 0, 5, 0, 2, 0, 1, 0, 0, 8, 0, 3, 0, 1, 0, 1, 0, 13, 0, 5, 0, 2, 0, 1, 0, 0, 21, 0, 8, 0, 3, 0, 1, 0, 1, 0, 34, 0, 13, 0, 5, 0, 2, 0, 1, 0, 0, 55, 0, 21, 0, 8, 0, 3, 0, 1, 0, 1, 0, 89, 0, 34, 0, 13, 0, 5, 0, 2, 0, 1, 0, 0, 144, 0, 55, 0, 21, 0, 8, 0, 3, 0, 1, 0, 1
OFFSET
0,12
LINKS
Joerg Arndt, Subset-lex: did we miss an order?, arXiv:1405.6503 [math.CO], (26-May-2014)
FORMULA
T(0,0)=1, T(0,k)=0 for k != 1 (first column).
T(n,k) = 0 for k>=1 and even.
T(n,n) = 1 for n>=1 and odd, otherwise T(n,n)=0.
T(n,k) = F(n-k-1) for n>=1 and odd k>=1, F = A000045.
EXAMPLE
Triangle starts:
00: 1,
01: 0, 1,
02: 0, 1, 0,
03: 0, 1, 0, 1,
04: 0, 2, 0, 1, 0,
05: 0, 3, 0, 1, 0, 1,
06: 0, 5, 0, 2, 0, 1, 0,
07: 0, 8, 0, 3, 0, 1, 0, 1,
08: 0, 13, 0, 5, 0, 2, 0, 1, 0,
09: 0, 21, 0, 8, 0, 3, 0, 1, 0, 1,
10: 0, 34, 0, 13, 0, 5, 0, 2, 0, 1, 0,
11: 0, 55, 0, 21, 0, 8, 0, 3, 0, 1, 0, 1,
12: 0, 89, 0, 34, 0, 13, 0, 5, 0, 2, 0, 1, 0,
13: 0, 144, 0, 55, 0, 21, 0, 8, 0, 3, 0, 1, 0, 1,
14: 0, 233, 0, 89, 0, 34, 0, 13, 0, 5, 0, 2, 0, 1, 0,
15: 0, 377, 0, 144, 0, 55, 0, 21, 0, 8, 0, 3, 0, 1, 0, 1,
MAPLE
b:= proc(n) b(n):=`if`(n=0, 1, add(b(n-2*j-1), j=0..(n-1)/2)) end:
T:= (n, k)-> `if`([n, k]=[0$2], 1, `if`(irem(k, 2)=0 or k>n, 0, b(n-k))):
seq(seq(T(n, k), k=0..n), n=0..15); # Alois P. Heinz, May 10 2014
MATHEMATICA
b[n_] := If[n == 0, 1, Sum[b[n-2*j-1], {j, 0, (n-1)/2}]]; T[n_, k_] := If[{n, k} == {0, 0}, 1, If[Mod[k, 2] == 0 || k>n, 0, b[n-k]]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 15}] // Flatten (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *)
CROSSREFS
Cf. A000045.
Sequence in context: A355619 A355607 A253184 * A160973 A036853 A036852
KEYWORD
nonn,tabl
AUTHOR
Joerg Arndt, May 04 2014
STATUS
approved