login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of compositions of n into odd parts with first part k.
0

%I #15 Feb 18 2015 03:55:01

%S 1,0,1,0,1,0,0,1,0,1,0,2,0,1,0,0,3,0,1,0,1,0,5,0,2,0,1,0,0,8,0,3,0,1,

%T 0,1,0,13,0,5,0,2,0,1,0,0,21,0,8,0,3,0,1,0,1,0,34,0,13,0,5,0,2,0,1,0,

%U 0,55,0,21,0,8,0,3,0,1,0,1,0,89,0,34,0,13,0,5,0,2,0,1,0,0,144,0,55,0,21,0,8,0,3,0,1,0,1

%N Triangle read by rows: T(n,k) is the number of compositions of n into odd parts with first part k.

%H Joerg Arndt, <a href="http://arxiv.org/abs/1405.6503">Subset-lex: did we miss an order?</a>, arXiv:1405.6503 [math.CO], (26-May-2014)

%F T(0,0)=1, T(0,k)=0 for k != 1 (first column).

%F T(n,k) = 0 for k>=1 and even.

%F T(n,n) = 1 for n>=1 and odd, otherwise T(n,n)=0.

%F T(n,k) = F(n-k-1) for n>=1 and odd k>=1, F = A000045.

%e Triangle starts:

%e 00: 1,

%e 01: 0, 1,

%e 02: 0, 1, 0,

%e 03: 0, 1, 0, 1,

%e 04: 0, 2, 0, 1, 0,

%e 05: 0, 3, 0, 1, 0, 1,

%e 06: 0, 5, 0, 2, 0, 1, 0,

%e 07: 0, 8, 0, 3, 0, 1, 0, 1,

%e 08: 0, 13, 0, 5, 0, 2, 0, 1, 0,

%e 09: 0, 21, 0, 8, 0, 3, 0, 1, 0, 1,

%e 10: 0, 34, 0, 13, 0, 5, 0, 2, 0, 1, 0,

%e 11: 0, 55, 0, 21, 0, 8, 0, 3, 0, 1, 0, 1,

%e 12: 0, 89, 0, 34, 0, 13, 0, 5, 0, 2, 0, 1, 0,

%e 13: 0, 144, 0, 55, 0, 21, 0, 8, 0, 3, 0, 1, 0, 1,

%e 14: 0, 233, 0, 89, 0, 34, 0, 13, 0, 5, 0, 2, 0, 1, 0,

%e 15: 0, 377, 0, 144, 0, 55, 0, 21, 0, 8, 0, 3, 0, 1, 0, 1,

%p b:= proc(n) b(n):=`if`(n=0, 1, add(b(n-2*j-1), j=0..(n-1)/2)) end:

%p T:= (n, k)-> `if`([n, k]=[0$2], 1, `if`(irem(k, 2)=0 or k>n, 0, b(n-k))):

%p seq(seq(T(n, k), k=0..n), n=0..15); # _Alois P. Heinz_, May 10 2014

%t b[n_] := If[n == 0, 1, Sum[b[n-2*j-1], {j, 0, (n-1)/2}]]; T[n_, k_] := If[{n, k} == {0, 0}, 1, If[Mod[k, 2] == 0 || k>n, 0, b[n-k]]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 15}] // Flatten (* _Jean-François Alcover_, Feb 18 2015, after _Alois P. Heinz_ *)

%Y Cf. A000045.

%K nonn,tabl

%O 0,12

%A _Joerg Arndt_, May 04 2014