login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355605
Expansion of e.g.f. (1 + x)^(x^2/2).
2
1, 0, 0, 3, -6, 20, 0, -126, 1260, -4320, 5040, 180180, -2601720, 31309200, -372756384, 4877195400, -70178799600, 1099333347840, -18429818232960, 327676010785200, -6146676161388000, 121301442091851840, -2512746856371628800, 54527094987619716000
OFFSET
0,4
FORMULA
a(0) = 1; a(n) = -(n-1)!/2 * Sum_{k=3..n} (-1)^k * k/(k-2) * a(n-k)/(n-k)!.
a(n) = n! * Sum_{k=0..floor(n/3)} Stirling1(n-2*k,k)/(2^k * (n-2*k)!).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace((1+x)^(x^2/2)))
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x^2/2*log(1+x))))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-(i-1)!/2*sum(j=3, i, (-1)^j*j/(j-2)*v[i-j+1]/(i-j)!)); v;
(PARI) a(n) = n!*sum(k=0, n\3, stirling(n-2*k, k, 1)/(2^k*(n-2*k)!));
CROSSREFS
Sequence in context: A326317 A306522 A290784 * A356912 A176993 A359963
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jul 09 2022
STATUS
approved