login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281373
Coefficients in q-expansion of (E_2*E_4 - E_6)^2/(300*(E_6^2-E_4^3)), where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.
3
0, 1, 60, 1680, 30280, 405678, 4369680, 39729200, 315045840, 2230260741, 14340456648, 84870112272, 467160257760, 2411818867430, 11759239565472, 54457051387536, 240692336520352, 1019498573990610, 4152992658207660, 16319887656747248, 62032458633713904, 228608370781579488
OFFSET
0,3
COMMENTS
This is (up to a constant factor), the function phi defined in Cohn (2017) (see phi on page 114 of the Notices version).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Vincenzo Librandi)
Henry Cohn, A conceptual breakthrough in sphere packing, arXiv preprint arXiv:1611.01685 [math.MG], 2016.
Henry Cohn, A conceptual breakthrough in sphere packing, Notices Amer. Math. Soc., 64:2 (2017), pp. 102-115.
FORMULA
a(n) ~ exp(4*Pi*sqrt(n)) / (14400 * sqrt(2) * Pi^2 * n^(7/4)). - Vaclav Kotesovec, Jun 06 2018
MAPLE
with(numtheory); M:=100;
E := proc(k) local n, t1; global M;
t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n, n=1..M+1);
series(t1, q, M+1); end;
e2:=E(2); e4:=E(4); e6:=E(6);
t1:=series((e2*e4-e6)^2/518400, q, M+1);
t2:=series((e4^3-e6^2)/1728, q, M+1);
t3:=series(t1/t2, q, M+1);
seriestolist(t3);
MATHEMATICA
terms = 22;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E2[x]*E4[x] - E6[x])^2/(300*(E6[x]^2 - E4[x]^3)) + O[x]^terms // CoefficientList[#, x]& // Abs (* Jean-François Alcover, Feb 27 2018 *)
CROSSREFS
Cf. A006352, A004009, A013973, A145094, A281371 (the numerator), A000594 (the denominator), A319134, A319294.
Sequence in context: A269196 A054331 A160349 * A053528 A269104 A017776
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 04 2017
STATUS
approved