login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054331
One eighth of eighth unsigned column of Lanczos' triangle A053125.
2
1, 60, 1584, 27456, 366080, 4073472, 39690240, 349274112, 2835283968, 21554790400, 155194490880, 1067345510400, 7058711642112, 45127489814528, 280101660917760, 1693862087098368, 10009185060126720, 57935518230380544
OFFSET
0,2
REFERENCES
C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
FORMULA
a(n) = 2^(2*n-3)*binomial(2*n+8, 7) = -A053125(n+7, 7)/8 = A054326(n)/8.
G.f. (1+4*x)*(1+24*x+16*x^2)/(1-4*x)^8.
MATHEMATICA
Table[4^n Binomial[2n+8, 7]/8, {n, 0, 20}] (* Harvey P. Dale, Nov 03 2011 *)
LinearRecurrence[{32, -448, 3584, -17920, 57344, -114688, 131072, -65536}, {1, 60, 1584, 27456, 366080, 4073472, 39690240, 349274112}, 20] (* Harvey P. Dale, Feb 25 2022 *)
PROG
(PARI) vector(20, n, n--; 2^(2*n-3)*binomial(2*n+8, 7)) \\ G. C. Greubel, Jul 22 2019
(Magma) [2^(2*n-3)*Binomial(2*n+8, 7): n in [0..20]]; // G. C. Greubel, Jul 22 2019
(Sage) [2^(2*n-3)*binomial(2*n+8, 7) for n in (0..20)] # G. C. Greubel, Jul 22 2019
(GAP) List([0..20], n-> 2^(2*n-3)*Binomial(2*n+8, 7)); # G. C. Greubel, Jul 22 2019
CROSSREFS
Sequence in context: A289156 A288960 A269196 * A160349 A281373 A053528
KEYWORD
easy,nice,nonn
STATUS
approved