login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054332
One half of tenth unsigned column of Lanczos triangle A053125 (decreasing powers).
2
5, 440, 16016, 366080, 6223360, 85995520, 1018716160, 10711072768, 102385254400, 905301196800, 7501067059200, 58822597017600, 439993025691648, 3158924287016960, 21879051958353920, 146801380881858560
OFFSET
0,1
REFERENCES
C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
FORMULA
a(n) = 2^(2*n-1)*binomial(2*n+10, 9) = -A053125(n+9, 9)/2 = A054328(n)/2.
G.f.: (1+40*x+80*x^2)*(5+40*x+16*x^2)/(1-4*x)^10.
MATHEMATICA
Table[2^(2*n-1)*Binomial[2*n+10, 9], {n, 0, 20}] (* G. C. Greubel, Jul 22 2019 *)
PROG
(PARI) vector(20, n, n--; 2^(2*n-1)*binomial(2*n+10, 9)) \\ G. C. Greubel, Jul 22 2019
(Magma) [2^(2*n-1)*Binomial(2*n+10, 9): n in [0..20]]; // G. C. Greubel, Jul 22 2019
(Sage) [2^(2*n-1)*binomial(2*n+10, 9) for n in (0..20)] # G. C. Greubel, Jul 22 2019
(GAP) List([0..20], n-> 2^(2*n-1)*Binomial(2*n+10, 9)); # G. C. Greubel, Jul 22 2019
CROSSREFS
Sequence in context: A038003 A359992 A377724 * A145247 A317345 A333263
KEYWORD
easy,nonn
STATUS
approved