login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054329
One quarter of fourth unsigned column of Lanczos' triangle A053125.
2
1, 20, 224, 1920, 14080, 93184, 573440, 3342336, 18677760, 100925440, 530579456, 2726297600, 13740539904, 68115496960, 332859965440, 1606317768704, 7666516623360, 36232344109056, 169737107537920, 788899592929280
OFFSET
0,2
REFERENCES
C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
FORMULA
a(n)= 4^(n-1)*binomial(2*n+4, 3)= -A053125(n+3, 3)/4 = A054322(n)/4.
G.f.: (1+4*x)/(1-4*x)^4.
E.g.f.: (3 + 48*x + 120*x^2 + 64*x^3)*exp(4*x)/3. - G. C. Greubel, Jul 22 2019
MATHEMATICA
Table[4^(n-1)*Binomial[2*n+4, 3], {n, 0, 30}] (* G. C. Greubel, Jul 22 2019 *)
PROG
(PARI) vector(30, n, n--; 4^(n-1)*binomial(2*n+4, 3)) \\ G. C. Greubel, Jul 22 2019
(Magma) [4^(n-1)*Binomial(2*n+4, 3): n in [0..30]]; // G. C. Greubel, Jul 22 2019
(Sage) [4^(n-1)*binomial(2*n+4, 3) for n in (0..30)] # G. C. Greubel, Jul 22 2019
(GAP) List([0..30], n-> 4^(n-1)*Binomial(2*n+4, 3)); # G. C. Greubel, Jul 22 2019
CROSSREFS
Sequence in context: A000833 A302661 A178261 * A112503 A007160 A195265
KEYWORD
easy,nonn
STATUS
approved