login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054326
Eighth unsigned column of Lanczos triangle A053125 (decreasing powers).
3
8, 480, 12672, 219648, 2928640, 32587776, 317521920, 2794192896, 22682271744, 172438323200, 1241555927040, 8538764083200, 56469693136896, 361019918516224, 2240813287342080, 13550896696786944, 80073480481013760
OFFSET
0,1
REFERENCES
C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
FORMULA
a(n) = 4^n*binomial(2*n+8, 7) = -A053125(n+7, 7) = 8*A054331(n).
G.f.: 8*(4*x+1)*(16*x^2+24*x+1)/(1-4*x)^8.
a(0)=8, a(1)=480, a(2)=12672, a(3)=219648, a(4)=2928640, a(5)=32587776, a(6)=317521920, a(7)=2794192896, a(n) = 32*a(n-1) - 448*a(n-2) + 3584*a(n-3) - 17920*a(n-4) + 57344*a(n-5) - 114688*a(n-6) + 131072*a(n-7) - 65536*a(n-8). - Harvey P. Dale, Oct 23 2012
MATHEMATICA
Table[4^n Binomial[2n+8, 7], {n, 0, 20}] (* or *) LinearRecurrence[{32, -448, 3584, -17920, 57344, -114688, 131072, -65536}, {8, 480, 12672, 219648, 2928640, 32587776, 317521920, 2794192896}, 20] (* Harvey P. Dale, Oct 23 2012 *)
PROG
(PARI) vector(20, n, n--; 4^n*binomial(2*n+8, 7)) \\ G. C. Greubel, Jul 22 2019
(Magma) [4^n*Binomial(2*n+8, 7): n in [0..20]]; // G. C. Greubel, Jul 22 2019
(Sage) [4^n*binomial(2*n+8, 7) for n in (0..20)] # G. C. Greubel, Jul 22 2019
(GAP) List([0..20], n-> 4^n*Binomial(2*n+8, 7)); # G. C. Greubel, Jul 22 2019
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved