Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Sep 08 2022 08:45:00
%S 8,480,12672,219648,2928640,32587776,317521920,2794192896,22682271744,
%T 172438323200,1241555927040,8538764083200,56469693136896,
%U 361019918516224,2240813287342080,13550896696786944,80073480481013760
%N Eighth unsigned column of Lanczos triangle A053125 (decreasing powers).
%D C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
%D Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
%H Harvey P. Dale, <a href="/A054326/b054326.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (32, -448, 3584, -17920, 57344, -114688, 131072, -65536).
%F a(n) = 4^n*binomial(2*n+8, 7) = -A053125(n+7, 7) = 8*A054331(n).
%F G.f.: 8*(4*x+1)*(16*x^2+24*x+1)/(1-4*x)^8.
%F a(0)=8, a(1)=480, a(2)=12672, a(3)=219648, a(4)=2928640, a(5)=32587776, a(6)=317521920, a(7)=2794192896, a(n) = 32*a(n-1) - 448*a(n-2) + 3584*a(n-3) - 17920*a(n-4) + 57344*a(n-5) - 114688*a(n-6) + 131072*a(n-7) - 65536*a(n-8). - _Harvey P. Dale_, Oct 23 2012
%t Table[4^n Binomial[2n+8,7],{n,0,20}] (* or *) LinearRecurrence[{32,-448, 3584,-17920,57344,-114688,131072,-65536},{8,480,12672,219648,2928640, 32587776,317521920,2794192896},20] (* _Harvey P. Dale_, Oct 23 2012 *)
%o (PARI) vector(20, n, n--; 4^n*binomial(2*n+8,7)) \\ _G. C. Greubel_, Jul 22 2019
%o (Magma) [4^n*Binomial(2*n+8,7): n in [0..20]]; // _G. C. Greubel_, Jul 22 2019
%o (Sage) [4^n*binomial(2*n+8,7) for n in (0..20)] # _G. C. Greubel_, Jul 22 2019
%o (GAP) List([0..20], n-> 4^n*Binomial(2*n+8,7)); # _G. C. Greubel_, Jul 22 2019
%Y Cf. A053125, A054325, A054331.
%K nonn,easy
%O 0,1
%A _Wolfdieter Lang_