The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A145094 Coefficients in expansion of Eisenstein series q*E'_4. 11
 240, 4320, 20160, 70080, 151200, 362880, 577920, 1123200, 1635120, 2721600, 3516480, 5886720, 6857760, 10402560, 12700800, 17975040, 20049120, 29432160, 31281600, 44150400, 48545280, 63296640, 67167360, 94348800, 94506000, 123439680, 132451200 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Seiichi Manyama, Table of n, a(n) for n = 1..1000 M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998. Eric Weisstein's World of Mathematics, Eisenstein Series FORMULA q*E'_4 = (E_2*E_4-E_6)/3. G.f.: 240*x*f'(x), where f(x) = Sum_{k>=1} k^3*x^k/(1 - x^k). - Ilya Gutkovskiy, Aug 31 2017 EXAMPLE G.f. = 240*q + 4320*q^2 + 20160*q^3 + 70080*q^4 + 151200*q^5 + ... MATHEMATICA terms = 28; E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}]; E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}]; (E2[x]*E4[x] - E6[x])/3 + O[x]^terms // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Feb 23 2018 *) CROSSREFS Cf. A004009, A076835. Cf. A076835 (-q*E'_2), this sequence (q*E'_4), A145095 (-q*E'_6). Sequence in context: A234720 A249533 A324070 * A239245 A218131 A268637 Adjacent sequences:  A145091 A145092 A145093 * A145095 A145096 A145097 KEYWORD nonn AUTHOR N. J. A. Sloane, Feb 28 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 09:03 EDT 2020. Contains 337298 sequences. (Running on oeis4.)