login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145094
Coefficients in expansion of Eisenstein series q*E'_4.
11
240, 4320, 20160, 70080, 151200, 362880, 577920, 1123200, 1635120, 2721600, 3516480, 5886720, 6857760, 10402560, 12700800, 17975040, 20049120, 29432160, 31281600, 44150400, 48545280, 63296640, 67167360, 94348800, 94506000, 123439680, 132451200
OFFSET
1,1
LINKS
M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998.
Eric Weisstein's World of Mathematics, Eisenstein Series
FORMULA
q*E'_4 = (E_2*E_4-E_6)/3.
G.f.: 240*x*f'(x), where f(x) = Sum_{k>=1} k^3*x^k/(1 - x^k). - Ilya Gutkovskiy, Aug 31 2017
Sum_{k=1..n} a(k) ~ 8 * Pi^4 * n^5 / 15. - Vaclav Kotesovec, May 09 2022
EXAMPLE
G.f. = 240*q + 4320*q^2 + 20160*q^3 + 70080*q^4 + 151200*q^5 + ...
MATHEMATICA
terms = 28;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E2[x]*E4[x] - E6[x])/3 + O[x]^terms // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Feb 23 2018 *)
CROSSREFS
Cf. A076835 (-q*E'_2), this sequence (q*E'_4), A145095 (-q*E'_6).
Sequence in context: A234720 A249533 A324070 * A239245 A218131 A268637
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 28 2009
STATUS
approved