login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A076835 Coefficients in expansion of Eisenstein series -q*E'_2. 9
24, 144, 288, 672, 720, 1728, 1344, 2880, 2808, 4320, 3168, 8064, 4368, 8064, 8640, 11904, 7344, 16848, 9120, 20160, 16128, 19008, 13248, 34560, 18600, 26208, 25920, 37632, 20880, 51840, 23808, 48384, 38016, 44064, 40320, 78624, 33744, 54720, 52416, 86400 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..1000

M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998.

Eric Weisstein's World of Mathematics, Eisenstein Series

FORMULA

q*E'_2 = (E_2^2-E_4)/12.

a(n) = 24*A064987(n).

G.f.: 24*x*f'(x), where f(x) = Sum_{k>=1} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Aug 31 2017

EXAMPLE

G.f. = 24*q + 144*q^2 + 288*q^3 + 672*q^4 + 720*q^5 + ...

MAPLE

with(numtheory); E:=proc(k) series(1-(2*k/bernoulli(k))*add( sigma[k-1](n)*q^n, n=1..60), q, 61); end; -diff(E(2), q);

MATHEMATICA

terms = 41;

E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];

E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];

-(E2[x]^2 - E4[x])/12 + O[x]^terms // CoefficientList[#, x]& // Rest (* Jean-Fran├žois Alcover, Feb 23 2018 *)

CROSSREFS

Cf. A006352 (E_2), A004009 (E_4), A064987.

Cf. this sequence (-q*E'_2), A145094 (q*E'_4), A145095 (-q*E'_6).

Sequence in context: A219988 A316928 A326856 * A007900 A158874 A059593

Adjacent sequences:  A076832 A076833 A076834 * A076836 A076837 A076838

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Feb 28 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 23:50 EST 2022. Contains 350504 sequences. (Running on oeis4.)