OFFSET
0,6
COMMENTS
In general, if c > 0, mod(d,c) <> 0 and e.g.f. = Product_{k>=1} (1 + x^(c*k+d) / (c*k+d)), then a(n) ~ n! * Gamma(1 + d/c) / (c^(1/c) * exp(gamma/c) * Gamma(1/c) * Gamma(1 + (d+1)/c) * n^(1 - 1/c)), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the Gamma function.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..440
Vaclav Kotesovec, Graph - the asymptotic ratio (40000 terms)
FORMULA
a(n) ~ n! / (sqrt(2*Pi) * exp(gamma/4) * n^(3/4)), where gamma is the Euler-Mascheroni constant A001620.
MATHEMATICA
nmax = 30; CoefficientList[Series[Product[(1+x^(4*k-3)/(4*k-3)), {k, 1, Floor[nmax/4]+1}], {x, 0, nmax}], x] * Range[0, nmax]!
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jul 27 2019
STATUS
approved