login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059593
Number of degree-n permutations of order exactly 5.
5
0, 0, 0, 0, 0, 24, 144, 504, 1344, 3024, 78624, 809424, 4809024, 20787624, 72696624, 1961583624, 28478346624, 238536558624, 1425925698624, 6764765838624, 189239120970624, 3500701266525624, 37764092547420624, 288099608198025624
OFFSET
0,6
COMMENTS
The number of degree-n permutations of order exactly p (where p is prime) satisfies a(n) =a(n-1) + (1+a(n-p))*(n-1)!/(n-p)! with a(n)=0 if p>n. Also a(n) = Sum_{j=1 to floor[n/p]} n!/(j!*(n-p*j)!*(p^j)).
LINKS
FORMULA
a(n) = a(n - 1) + (1 + a(n - 5))*(n - 1)(n - 2)(n - 3)(n - 4).
a(n) = Sum_{j=1..floor(n/5)} n!/(j!*(n - 5*j)!*(5^j)).
From G. C. Greubel, May 14 2019: (Start)
a(n) = A052501(n) - 1.
E.g.f.: exp(x + x^5/5) - exp(x). (End)
MAPLE
a:= proc(n) option remember;
`if`(n<5, 0, a(n-1)+(1+a(n-5))*(n-1)!/(n-5)!)
end:
seq(a(n), n=1..30); # Alois P. Heinz, Jan 25 2014
MATHEMATICA
Table[Sum[n!/(j!*(n-5*j)!*5^j), {j, 1, Floor[n/5]}], {n, 0, 25}] (* G. C. Greubel, May 14 2019 *)
PROG
(PARI) {a(n) = sum(j=1, floor(n/5), n!/(j!*(n-5*j)!*5^j))}; \\ G. C. Greubel, May 14 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^5/5) )); [Factorial(n-1)*b[n]-1: n in [1..m]]; // G. C. Greubel, May 14 2019
(Sage) m = 30; T = taylor(exp(x + x^5/5) -exp(x), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 14 2019
CROSSREFS
Column k=5 of A057731. - Alois P. Heinz, Feb 16 2013
Sequence in context: A076835 A007900 A158874 * A200194 A182075 A054118
KEYWORD
nonn
AUTHOR
Henry Bottomley, Jan 26 2001
STATUS
approved