login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059593 Number of degree-n permutations of order exactly 5. 4
0, 0, 0, 0, 0, 24, 144, 504, 1344, 3024, 78624, 809424, 4809024, 20787624, 72696624, 1961583624, 28478346624, 238536558624, 1425925698624, 6764765838624, 189239120970624, 3500701266525624, 37764092547420624, 288099608198025624 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

The number of degree-n permutations of order exactly p (where p is prime) satisfies a(n) =a(n-1)+(1+a(n-p))*(n-1)!/(n-p)! with a(n)=0 if p>n. Also a(n)=Sum_{j=1 to floor[n/p]}[n!/(j!*(n-p*j)!*(p^j))].

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..300

FORMULA

a(n) = a(n - 1) + (1 + a(n - 5))*(n - 1)(n - 2)(n - 3)(n - 4) = Sum_{j = 1 to floor[n/5]}[n!/(j!*(n - 5j)!*(5^j))].

MAPLE

a:= proc(n) option remember;

      `if`(n<5, 0, a(n-1)+(1+a(n-5))*(n-1)!/(n-5)!)

    end:

seq(a(n), n=1..30);  # Alois P. Heinz, Jan 25 2014

CROSSREFS

Cf. A001471.

Column k=5 of A057731. - Alois P. Heinz, Feb 16 2013

Sequence in context: A076835 A007900 A158874 * A200194 A182075 A054118

Adjacent sequences:  A059590 A059591 A059592 * A059594 A059595 A059596

KEYWORD

nonn

AUTHOR

Henry Bottomley, Jan 26 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 23:13 EST 2016. Contains 279021 sequences.