OFFSET
0,6
COMMENTS
The number of degree-n permutations of order exactly p (where p is prime) satisfies a(n) =a(n-1) + (1+a(n-p))*(n-1)!/(n-p)! with a(n)=0 if p>n. Also a(n) = Sum_{j=1 to floor[n/p]} n!/(j!*(n-p*j)!*(p^j)).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..300
FORMULA
a(n) = a(n - 1) + (1 + a(n - 5))*(n - 1)(n - 2)(n - 3)(n - 4).
a(n) = Sum_{j=1..floor(n/5)} n!/(j!*(n - 5*j)!*(5^j)).
From G. C. Greubel, May 14 2019: (Start)
a(n) = A052501(n) - 1.
E.g.f.: exp(x + x^5/5) - exp(x). (End)
MAPLE
a:= proc(n) option remember;
`if`(n<5, 0, a(n-1)+(1+a(n-5))*(n-1)!/(n-5)!)
end:
seq(a(n), n=1..30); # Alois P. Heinz, Jan 25 2014
MATHEMATICA
Table[Sum[n!/(j!*(n-5*j)!*5^j), {j, 1, Floor[n/5]}], {n, 0, 25}] (* G. C. Greubel, May 14 2019 *)
PROG
(PARI) {a(n) = sum(j=1, floor(n/5), n!/(j!*(n-5*j)!*5^j))}; \\ G. C. Greubel, May 14 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^5/5) )); [Factorial(n-1)*b[n]-1: n in [1..m]]; // G. C. Greubel, May 14 2019
(Sage) m = 30; T = taylor(exp(x + x^5/5) -exp(x), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 14 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Henry Bottomley, Jan 26 2001
STATUS
approved