Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Sep 16 2018 21:40:47
%S 0,1,60,1680,30280,405678,4369680,39729200,315045840,2230260741,
%T 14340456648,84870112272,467160257760,2411818867430,11759239565472,
%U 54457051387536,240692336520352,1019498573990610,4152992658207660,16319887656747248,62032458633713904,228608370781579488
%N Coefficients in q-expansion of (E_2*E_4 - E_6)^2/(300*(E_6^2-E_4^3)), where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.
%C This is (up to a constant factor), the function phi defined in Cohn (2017) (see phi on page 114 of the Notices version).
%H Vaclav Kotesovec, <a href="/A281373/b281373.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Vincenzo Librandi)
%H Henry Cohn, <a href="https://arxiv.org/abs/1611.01685">A conceptual breakthrough in sphere packing</a>, arXiv preprint arXiv:1611.01685 [math.MG], 2016.
%H Henry Cohn, <a href="http://www.ams.org/journals/notices/201702/rnoti-p102.pdf">A conceptual breakthrough in sphere packing</a>, Notices Amer. Math. Soc., 64:2 (2017), pp. 102-115.
%F a(n) ~ exp(4*Pi*sqrt(n)) / (14400 * sqrt(2) * Pi^2 * n^(7/4)). - _Vaclav Kotesovec_, Jun 06 2018
%p with(numtheory); M:=100;
%p E := proc(k) local n, t1; global M;
%p t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n, n=1..M+1);
%p series(t1, q, M+1); end;
%p e2:=E(2); e4:=E(4); e6:=E(6);
%p t1:=series((e2*e4-e6)^2/518400,q,M+1);
%p t2:=series((e4^3-e6^2)/1728,q,M+1);
%p t3:=series(t1/t2,q,M+1);
%p seriestolist(t3);
%t terms = 22;
%t E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
%t E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
%t E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
%t (E2[x]*E4[x] - E6[x])^2/(300*(E6[x]^2 - E4[x]^3)) + O[x]^terms // CoefficientList[#, x]& // Abs (* _Jean-François Alcover_, Feb 27 2018 *)
%Y Cf. A006352, A004009, A013973, A145094, A281371 (the numerator), A000594 (the denominator), A319134, A319294.
%K nonn
%O 0,3
%A _N. J. A. Sloane_, Feb 04 2017