login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017776
Binomial coefficients C(60,n).
3
1, 60, 1770, 34220, 487635, 5461512, 50063860, 386206920, 2558620845, 14783142660, 75394027566, 342700125300, 1399358844975, 5166863427600, 17345898649800, 53194089192720, 149608375854525, 387221678682300, 925029565741050, 2044802197953900
OFFSET
0,2
COMMENTS
Row 60 of A007318.
LINKS
Nathaniel Johnston, Table of n, a(n) for n = 0..60 (full sequence)
FORMULA
From G. C. Greubel, Nov 13 2018: (Start)
G.f.: (1+x)^60.
E.g.f.: 1F1(-60; 1; -x), where 1F1 is the confluent hypergeometric function. (End)
MAPLE
seq(binomial(60, n), n=0..60); # Nathaniel Johnston, Jun 24 2011
MATHEMATICA
Binomial[60, Range[0, 60]] (* G. C. Greubel, Nov 13 2018 *)
PROG
(Sage) [binomial(60, n) for n in range(18)] # Zerinvary Lajos, May 28 2009
(PARI) vector(60, n, n--; binomial(60, n)) \\ G. C. Greubel, Nov 13 2018
(Magma) [Binomial(60, n): n in [0..60]]; // G. C. Greubel, Nov 13 2018
KEYWORD
nonn,fini,full,easy
STATUS
approved