Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Jun 28 2023 21:46:49
%S 1,60,1770,34220,487635,5461512,50063860,386206920,2558620845,
%T 14783142660,75394027566,342700125300,1399358844975,5166863427600,
%U 17345898649800,53194089192720,149608375854525,387221678682300,925029565741050,2044802197953900
%N Binomial coefficients C(60,n).
%C Row 60 of A007318.
%H Nathaniel Johnston, <a href="/A017776/b017776.txt">Table of n, a(n) for n = 0..60</a> (full sequence)
%F From _G. C. Greubel_, Nov 13 2018: (Start)
%F G.f.: (1+x)^60.
%F E.g.f.: 1F1(-60; 1; -x), where 1F1 is the confluent hypergeometric function. (End)
%p seq(binomial(60,n), n=0..60); # _Nathaniel Johnston_, Jun 24 2011
%t Binomial[60, Range[0,60]] (* _G. C. Greubel_, Nov 13 2018 *)
%o (Sage) [binomial(60, n) for n in range(18)] # _Zerinvary Lajos_, May 28 2009
%o (PARI) vector(60, n, n--; binomial(60,n)) \\ _G. C. Greubel_, Nov 13 2018
%o (Magma) [Binomial(60,n): n in [0..60]]; // _G. C. Greubel_, Nov 13 2018
%Y Cf. A010926-A011001, A017765-A017775, A017777-A017816.
%K nonn,fini,full,easy
%O 0,2
%A _N. J. A. Sloane_