login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035725
Coordination sequence for 30-dimensional cubic lattice.
1
1, 60, 1800, 36020, 541200, 6516012, 65520920, 566262180, 4296107040, 29081139740, 177923724072, 994286700180, 5119703270960, 24470719227660, 109262828065080, 458259268924292, 1814077233023040, 6806971942073340
OFFSET
0,2
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
Index entries for linear recurrences with constant coefficients, signature (30, -435, 4060, -27405, 142506, -593775, 2035800, -5852925, 14307150, -30045015, 54627300, -86493225, 119759850, -145422675, 155117520, -145422675, 119759850, -86493225, 54627300, -30045015, 14307150, -5852925, 2035800, -593775, 142506, -27405, 4060, -435, 30, -1).
FORMULA
G.f.: ((1+x)/(1-x))^30.
n*a(n) = 60*a(n-1) + (n-2)*a(n-2) for n > 1. - Seiichi Manyama, Aug 22 2018
MATHEMATICA
CoefficientList[Series[((1+x)/(1-x))^30, {x, 0, 20}], x] (* Harvey P. Dale, Jun 06 2021 *)
CROSSREFS
Sequence in context: A053528 A269104 A017776 * A035800 A017723 A214946
KEYWORD
nonn,easy
AUTHOR
Joan Serra-Sagrista (jserra(AT)ccd.uab.es)
EXTENSIONS
Recomputed by N. J. A. Sloane, Nov 25 1998
STATUS
approved