Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jun 06 2021 12:42:58
%S 1,60,1800,36020,541200,6516012,65520920,566262180,4296107040,
%T 29081139740,177923724072,994286700180,5119703270960,24470719227660,
%U 109262828065080,458259268924292,1814077233023040,6806971942073340
%N Coordination sequence for 30-dimensional cubic lattice.
%H Seiichi Manyama, <a href="/A035725/b035725.txt">Table of n, a(n) for n = 0..10000</a>
%H J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (<a href="http://neilsloane.com/doc/Me220.pdf">pdf</a>).
%H Joan Serra-Sagrista, <a href="https://dx.doi.org/10.1016/S0020-0190(00)00119-8">Enumeration of lattice points in l_1 norm</a>, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
%H <a href="/index/Rec#order_30">Index entries for linear recurrences with constant coefficients</a>, signature (30, -435, 4060, -27405, 142506, -593775, 2035800, -5852925, 14307150, -30045015, 54627300, -86493225, 119759850, -145422675, 155117520, -145422675, 119759850, -86493225, 54627300, -30045015, 14307150, -5852925, 2035800, -593775, 142506, -27405, 4060, -435, 30, -1).
%F G.f.: ((1+x)/(1-x))^30.
%F n*a(n) = 60*a(n-1) + (n-2)*a(n-2) for n > 1. - _Seiichi Manyama_, Aug 22 2018
%t CoefficientList[Series[((1+x)/(1-x))^30,{x,0,20}],x] (* _Harvey P. Dale_, Jun 06 2021 *)
%K nonn,easy
%O 0,2
%A Joan Serra-Sagrista (jserra(AT)ccd.uab.es)
%E Recomputed by _N. J. A. Sloane_, Nov 25 1998