login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035728
Coordination sequence for 33-dimensional cubic lattice.
2
1, 66, 2178, 47938, 792066, 10484034, 115852418, 1099811394, 9160333314, 68031186498, 456334097538, 2793666465090, 15745443972610, 82302279485250, 401492555264130, 1837895885382722, 7932626513059842, 32418928714275906
OFFSET
0,2
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
Index entries for linear recurrences with constant coefficients, signature (33, -528, 5456, -40920, 237336, -1107568, 4272048, -13884156, 38567100, -92561040, 193536720, -354817320, 573166440, -818809200, 1037158320, -1166803110, 1166803110, -1037158320, 818809200, -573166440, 354817320, -193536720, 92561040, -38567100, 13884156, -4272048, 1107568, -237336, 40920, -5456, 528, -33, 1).
FORMULA
G.f.: ((1+x)/(1-x))^33.
n*a(n) = 66*a(n-1) + (n-2)*a(n-2) for n > 1. - Seiichi Manyama, Aug 23 2018
CROSSREFS
Sequence in context: A279446 A271797 A017782 * A114252 A240464 A017729
KEYWORD
nonn,easy
AUTHOR
Joan Serra-Sagrista (jserra(AT)ccd.uab.es)
EXTENSIONS
Recomputed by N. J. A. Sloane, Nov 25 1998
STATUS
approved