login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035729
Coordination sequence for 34-dimensional cubic lattice.
3
1, 68, 2312, 52428, 892432, 12168532, 138504984, 1354168796, 11614313504, 88805833316, 613171117352, 3863171679980, 22402282117680, 120450005575540, 604244840324920, 2843633280971772, 12614155679414336, 52965710906750084, 211305268473868616
OFFSET
0,2
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
Index entries for linear recurrences with constant coefficients, signature (34, -561, 5984, -46376, 278256, -1344904, 5379616, -18156204, 52451256, -131128140, 286097760, -548354040, 927983760, -1391975640, 1855967520, -2203961430, 2333606220, -2203961430, 1855967520, -1391975640, 927983760, -548354040, 286097760, -131128140, 52451256, -18156204, 5379616, -1344904, 278256, -46376, 5984, -561, 34, -1).
FORMULA
G.f.: ((1+x)/(1-x))^34. [clarified by Harvey P. Dale, Dec 07 2014]
n*a(n) = 68*a(n-1) + (n-2)*a(n-2) for n > 1. - Seiichi Manyama, Aug 24 2018
MAPLE
seq(coeff(series(((1+x)/(1-x))^34, x, n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Aug 24 2018
MATHEMATICA
CoefficientList[Series[((1+x)/(1-x))^34, {x, 0, 20}], x] (* Harvey P. Dale, Dec 07 2014 *)
PROG
(GAP) a:=[1, 68];; for n in [3..20] do a[n]:=1/(n-1)*(68*a[n-1]+(n-3)*a[n-2]); od; a; # Muniru A Asiru, Aug 24 2018
(PARI) x='x+O('x^25); Vec(((1+x)/(1-x))^34) \\ Altug Alkan, Aug 24 2018
(Magma) I:=[1, 68]; [n le 2 select I[n] else 1/(n-1)*(68*Self(n-1)+(n-3)*Self(n-2)): n in [1..30]]; // Vincenzo Librandi, Aug 29 2018
CROSSREFS
Sequence in context: A220722 A017784 A035802 * A017731 A204298 A281556
KEYWORD
nonn,easy
AUTHOR
Joan Serra-Sagrista (jserra(AT)ccd.uab.es)
EXTENSIONS
Recomputed by N. J. A. Sloane, Nov 25 1998
STATUS
approved