The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A035732 Coordination sequence for 37-dimensional cubic lattice. 2
 1, 74, 2738, 67562, 1251266, 18559274, 229731890, 2441850890, 22759419650, 189032223370, 1417045988658, 9687517561002, 60920563283394, 354975721241706, 1928517866520498, 9821667099910602, 47112663470291970 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf). Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44. Index entries for linear recurrences with constant coefficients, signature (37, -666, 7770, -66045, 435897, -2324784, 10295472, -38608020, 124403620, -348330136, 854992152, -1852482996, 3562467300, -6107086800, 9364199760, -12875774670, 15905368710, -17672631900, 17672631900, -15905368710, 12875774670, -9364199760, 6107086800, -3562467300, 1852482996, -854992152, 348330136, -124403620, 38608020, -10295472, 2324784, -435897, 66045, -7770, 666, -37, 1). FORMULA G.f.: ((1+x)/(1-x))^37. n*a(n) = 74*a(n-1) + (n-2)*a(n-2) for n > 1. - Seiichi Manyama, Aug 24 2018 MATHEMATICA CoefficientList[Series[((1+x)/(1-x))^37, {x, 0, 20}], x] (* Harvey P. Dale, Sep 23 2021 *) CROSSREFS Sequence in context: A007033 A277941 A017790 * A017737 A034203 A264497 Adjacent sequences:  A035729 A035730 A035731 * A035733 A035734 A035735 KEYWORD nonn,easy AUTHOR Joan Serra-Sagrista (jserra(AT)ccd.uab.es) EXTENSIONS Recomputed by N. J. A. Sloane, Nov 25 1998 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 10:25 EST 2022. Contains 350477 sequences. (Running on oeis4.)