login
A035732
Coordination sequence for 37-dimensional cubic lattice.
2
1, 74, 2738, 67562, 1251266, 18559274, 229731890, 2441850890, 22759419650, 189032223370, 1417045988658, 9687517561002, 60920563283394, 354975721241706, 1928517866520498, 9821667099910602, 47112663470291970
OFFSET
0,2
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
Index entries for linear recurrences with constant coefficients, signature (37, -666, 7770, -66045, 435897, -2324784, 10295472, -38608020, 124403620, -348330136, 854992152, -1852482996, 3562467300, -6107086800, 9364199760, -12875774670, 15905368710, -17672631900, 17672631900, -15905368710, 12875774670, -9364199760, 6107086800, -3562467300, 1852482996, -854992152, 348330136, -124403620, 38608020, -10295472, 2324784, -435897, 66045, -7770, 666, -37, 1).
FORMULA
G.f.: ((1+x)/(1-x))^37.
n*a(n) = 74*a(n-1) + (n-2)*a(n-2) for n > 1. - Seiichi Manyama, Aug 24 2018
MATHEMATICA
CoefficientList[Series[((1+x)/(1-x))^37, {x, 0, 20}], x] (* Harvey P. Dale, Sep 23 2021 *)
CROSSREFS
Sequence in context: A007033 A277941 A017790 * A017737 A358796 A034203
KEYWORD
nonn,easy
AUTHOR
Joan Serra-Sagrista (jserra(AT)ccd.uab.es)
EXTENSIONS
Recomputed by N. J. A. Sloane, Nov 25 1998
STATUS
approved