login
A035733
Coordination sequence for 38-dimensional cubic lattice.
2
1, 76, 2888, 73188, 1392016, 21202556, 269493720, 2941076500, 28142347040, 239933990060, 1846012202088, 12950575751748, 83558656596144, 499454941121244, 2782948528883448, 14533133495314548, 71467464065517120
OFFSET
0,2
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
Index entries for linear recurrences with constant coefficients, signature (38, -703, 8436, -73815, 501942, -2760681, 12620256, -48903492, 163011640, -472733756, 1203322288, -2707475148, 5414950296, -9669554100, 15471286560, -22239974430, 28781143380, -33578000610, 35345263800, -33578000610, 28781143380, -22239974430, 15471286560, -9669554100, 5414950296, -2707475148, 1203322288, -472733756, 163011640, -48903492, 12620256, -2760681, 501942, -73815, 8436, -703, 38, -1).
FORMULA
G.f.: ((1+x)/(1-x))^38.
n*a(n) = 76*a(n-1) + (n-2)*a(n-2) for n > 1. - Seiichi Manyama, Aug 25 2018
MATHEMATICA
CoefficientList[Series[((1+x)/(1-x))^38, {x, 0, 30}], x] (* Harvey P. Dale, Nov 25 2022 *)
CROSSREFS
Sequence in context: A205918 A261574 A017792 * A035804 A017739 A278685
KEYWORD
nonn,easy
AUTHOR
Joan Serra-Sagrista (jserra(AT)ccd.uab.es)
EXTENSIONS
Recomputed by N. J. A. Sloane, Nov 25 1998
STATUS
approved