login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035735
Coordination sequence for 40-dimensional cubic lattice.
2
1, 80, 3200, 85360, 1708800, 27392016, 366366080, 4206606640, 42340840960, 379634835920, 3070951360128, 22644802030320, 153524473002240, 963926974039440, 5639746542798720, 30914051605760688, 159505036253752320
OFFSET
0,2
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
Index entries for linear recurrences with constant coefficients, signature (40, -780, 9880, -91390, 658008, -3838380, 18643560, -76904685, 273438880, -847660528, 2311801440, -5586853480, 12033222880, -23206929840, 40225345056, -62852101650, 88732378800, -113380261800, 131282408400, -137846528820, 131282408400, -113380261800, 88732378800, -62852101650, 40225345056, -23206929840, 12033222880, -5586853480, 2311801440, -847660528, 273438880, -76904685, 18643560, -3838380, 658008, -91390, 9880, -780, 40, -1).
FORMULA
G.f.: ((1+x)/(1-x))^40.
n*a(n) = 80*a(n-1) + (n-2)*a(n-2) for n > 1. - Seiichi Manyama, Aug 27 2018
MATHEMATICA
CoefficientList[Series[((1+x)/(1-x))^40, {x, 0, 20}], x] (* Harvey P. Dale, Apr 25 2011 *)
PROG
(PARI) Vec(((1+x)/(1-x))^40 + O(x^20)) \\ Felix Fröhlich, Aug 27 2018
CROSSREFS
Sequence in context: A233950 A324071 A017796 * A035805 A017743 A234325
KEYWORD
nonn,easy
AUTHOR
Joan Serra-Sagrista (jserra(AT)ccd.uab.es)
EXTENSIONS
Recomputed by N. J. A. Sloane, Nov 25 1998
STATUS
approved