login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035737
Coordination sequence for 42-dimensional cubic lattice.
3
1, 84, 3528, 98812, 2076816, 34949796, 490681688, 5913144396, 62456027424, 587522034932, 4985149915368, 38549117382300, 273998113272240, 1803067831236420, 11053262513080440, 63460928860322028, 342841481215636032
OFFSET
0,2
COMMENTS
First differs from A035806 at a(21). a(21)=721321863363711058916, whereas A035806(21)=721321867761757570020. - Nathaniel Johnston, Jun 26 2011
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..500 from Nathaniel Johnston)
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
Index entries for linear recurrences with constant coefficients, signature (42, -861, 11480, -111930, 850668, -5245786, 26978328, -118030185, 445891810, -1471442973, 4280561376, -11058116888, 25518731280, -52860229080, 98672427616, -166509721602, 254661927156, -353697121050, 446775310800, -513791607420, 538257874440, -513791607420, 446775310800, -353697121050, 254661927156, -166509721602, 98672427616, -52860229080, 25518731280, -11058116888, 4280561376, -1471442973, 445891810, -118030185, 26978328, -5245786, 850668, -111930, 11480, -861, 42, -1).
FORMULA
G.f.: ((1+x)/(1-x))^42.
n*a(n) = 84*a(n-1) + (n-2)*a(n-2) for n > 1. - Seiichi Manyama, Aug 27 2018
MAPLE
t:=taylor(((1+x)/(1-x))^42, x, 30): seq(coeff(t, x, n), n=0..21); # Nathaniel Johnston, Jun 26 2011
MATHEMATICA
CoefficientList[Series[((1+x)/(1-x))^42, {x, 0, 20}], x] (* Harvey P. Dale, Aug 03 2012 *)
PROG
(PARI) Vec((((1+x)/(1-x))^42) + O(x^17)) \\ Felix Fröhlich, Aug 27 2018
CROSSREFS
Sequence in context: A026809 A114253 A017800 * A035806 A017747 A223959
KEYWORD
nonn,easy
AUTHOR
Joan Serra-Sagrista (jserra(AT)ccd.uab.es)
EXTENSIONS
Recomputed by N. J. A. Sloane, Nov 25 1998
STATUS
approved